
Adopting and Commenting the Old Kernel Source Code
for Education

Jiong Zhao
University of TongJi, Shanghai

gohigh@gmail.com

Trent Jarvi
University of Denver

taj@www.linux.uk.org

Abstract

Dissecting older kernels including their prob-
lems can be educational and an entertaining
review of where we have been. In this ses-
sion, we examine the older Linux kernel ver-
sion 0.11 and discuss some of our findings.
The primary reason for selecting this historical
kernel is that we have found that the current
kernel’s vast quantity of source code is far too
complex for hands-on learning purposes. Since
the 0.11 kernel has only 14,000 lines of code,
we can easily describe it in detail and perform
some meaningful experiments with a runnable
system effienctly. We then examine several as-
pects of the kernel including the memory man-
agement, stack usage and other aspects of the
Linux kernel. Next we explain several aspects
of using Bochs emulator to perform experi-
ments with the Linux 0.11 kernel. Finally, we
present and describe the structure of the Linux
kernel source including the lib/ directory.

1 Introduction

As Linus once said, if one wants to understand
the details of a software project, one should
“RTFSC - Read The F**king Source Code.”
The kernel is a complete system, the parts re-

late to each other to fulfill the functions of a
operating system. There are many hidden de-
tails in the system. If one ignores these de-
tails, like a blind men trying to size up the ele-
phant by taking a part for the whole, its hard
to understand the entire system and is difficult
to understand the design and implementations
of an actual system. Although one may obtain
some of the operating theory through reading
classical books like the “The design of Unix
operating system,” [4] the composition and in-
ternal relationships in an operating system are
not easy to comprehend. Andrew Tanenbaum,
the author of MINIX[1], once said in his book,
“teaching only theory leaves the student with a
lopsided view of what an operating system is
really like.” and “Subjects that really are im-
portant, such as I/O and file systems, are gen-
erally neglected because there is little theory
about them.” As a result, one may not know
the tricks involved in implementing a real op-
erating system. Only after reading the entire
source code of a operating system, may one get
a feeling of sudden enlightened about the ker-
nel.

In 1991 Linus made a similar statements[5] af-
ter distributing kernel version 0.03, “TheGNU
kernel (Hurd) will be free, but is currently not
ready, and will be too big to understand and
learn.” Likewise, the current Linux kernel is
too large to easily understand. Due to the small

Comparison of total line counts of Linux kernels

V1.2.13

V1.0

V1.1.52

V0.01

V0.11
V0.12

V0.95 V0.96a

V0.97 V0.98

V0.99

V2.0.38

V2.2.20

V2.4.17 V2.6.0

Y axis unit: 1000 Lines

Figure 1: Lines of code in various kernel ver-
sions

amount of code (only 14,000 lines) as shown in
Figure 1, the usability and the consistency with
the current kernel, it is feasible to choose Linux
0.11 kernel for students to learn and perform
experiments. The features of the 0.11 kernel
are so limited, it doesn’t even contain job con-
trol or virtual memory swapping. It can, how-
ever, still be run as a complete operating sys-
tem. As with an introductory book on operat-
ing systems, we need not deal with the more
complicated components such asVFS, ext3,
networking and more comprehensive memory
management systems in a modern kernel. As
students understand of the main concepts con-
cerning how an operating system is generally
implemented, they can learn to understand the
advanced parts for themselves. Thus, both
the teaching and learning become more effi-
cient and consume considerably less time. The
lower barrier to entry for learning can even
stimulate many young people to take part in
and involve in the Linux activities.

From teaching experience and student feed-
back, we found the most difficult part of study-
ing the 0.11 kernel is the memory management.
Therefore, in the following sections we mainly
deal with how the 0.11 kernel manages and
uses memory in the protected mode of the Intel

IA-32 processor along with the different kinds
of stacks used during the kernel initialization
of each task.

2 Linux Kernel Architecture

The Linux kernel is composed of five mod-
ules: task scheduling, memory management,
file system, interprocess communication (IPC)
and network. The task scheduling module is re-
sponsible for controlling the usage of the pro-
cessor for all tasks in the system. The strat-
egy used for scheduling is to provide reason-
able and fair usage between all tasks in the sys-
tem while at the same time insuring the pro-
cessing of hardware operations. The memory
management module is used to insure that all
tasks can share the main memory on the ma-
chine and provide the support for virtual mem-
ory mechanisms. The file system module is
used to support the driving of and storage in
peripheral devices. Virtual file system mod-
ules hide the various differences in details of
the hardware devices by providing a universal
file interface for peripheral storage equipment
and providing support for multiple formats of
file systems. TheIPC module is used to pro-
vide the means for exchanging messages be-
tween processes. The network interface mod-
ule provides access to multiple communication
standards and supports various types of net-
work hardware.

The relationship between these modules is il-
lustrated in Figure 2. The lines between them
indicates the dependences of each other. The
dashed lines and dashed line box indicate the
part not implemented in Linux 0.1x.

The figure shows the scheduling module rela-
tionship with all the other modules in the ker-
nel since they all depend on the schedules pro-

Figure 2: The relationship between Linux ker-
nel modules

vided to suspend and restart their tasks. Gen-
erally, a module may hang when waiting for
hardware operations, and continue running af-
ter the hardware operation finishes. The other
three modules have like relationships with the
schedule module for similar reasons.

The remaining modules have implicit depen-
dences with each other. The scheduling sub-
system needs memory management to adjust
the physical memory space used by each task.
The IPC subsystem requires the memory man-
agement module to support shared memory
communication mechanisms. Virtual file sys-
tems can also use the network interface to sup-
port the network file system (NFS). The mem-
ory management subsystem may also use the
file system to support the swapping of memory
data blocks.

From the monolithic model structure, we can
illustrate the main kernel modules in Figure 3
based on the structure of the Linux 0.11 kernel
source code.

3 Memory Usage

In this section, we first describe the usage of
physical memory in Linux 0.1x kernel. Then

Figure 3: Kernel structure framework

we explain the memorysegmentation, pag-
ing, multitaskingand theprotection mecha-
nisms. Finally, we summarize the relationship
between virtual, linear, and physical address
for the code and data in the kernel and for each
task.

3.1 Physical Memory

In order to use the physical memory of the ma-
chine efficiently with Linux 0.1x kernel, the
memory is divided into several areas as shown
in Figure 4.

As shown in Figure 4, the kernel code and
data occupies the first portion of the physi-
cal memory. This is followed by the cache
used for block devices such as hard disks and
floppy drives eliminating the memory space
used by the adapters andROM BIOS. When a
task needs data from a block device, it will be

Figure 4: The regions of physical memory

first read into the cache area from the block de-
vice. When a task needs to output the data to
a block device, the data is put into the cache
area first and then is written into the block de-
vice by the hardware driver in due time. The
last part of the physical memory is the main
area used dynamically from programs. When
kernel code needs a free memory page, it also
needs to make a request from the memory man-
agement subsystem. For a system configured
with virtual RAM disksin physical memory,
space must be reserved in memory.

Physical memory is normally managed by the
processor’s memory management mechanisms
to provide an efficient means for using the sys-
tem resources. The Intel 80X86 CPU provides
two memory management mechanisms: Seg-
mentation and paging. The paging mechanism
is optional and its use is determined by the
system programmer. The Linux operating sys-
tem uses both memory segmentation and pag-
ing mechanism approaches for flexibility and
efficiency of memory usage.

3.2 Memory address space

To perform address mapping in the Linux ker-
nel, we must first explain the three different
address concepts used invirtual or logical ad-
dress space, the CPUlinear address space, and
the actualphysicaladdress space. Thevirtual
addresses used in virtual address space are ad-

dresses composed of thesegment selectorand
offset in the segment generated by program.
Since the two part address can not be used to
access physical memory directly, this address
is referred to as a virtual address and must use
at least one of the address translation mecha-
nisms provided by CPU to map into the phys-
ical memory space. The virtual address space
is composed of theglobal address spacead-
dressed by the descriptors in global descrip-
tor table (GDT) and thelocal address space
addressed by the local descriptor table (LDT).
The index part of asegment selectorhas thir-
teen bits and one bit for the table index. The
Intel 80X86 processor can then provide a total
of 16384 selectors so it can addresses a maxi-
mum of 64T of virtual address space[2]. The
logical address is the offset portion of a virtual
address. Sometimes this is also referred to as
virtual address.

Linearaddress is the middle portion of address
translation from virtual to physical addresses.
This address space is addressable by the pro-
cessor. A program can use alogical address
or offsetin a segment and the base address of
the segment to get a linear address. Ifpaging
is enabled, the linear address can be translated
to produced a physical address. If thepagingis
disabled, then the linear address is actually the
same as physical address. The linear address
space provided by Intel 80386 is 4 GB.

Physical addressis the address on the proces-
sor’s external address bus, and is the final result
of address translation.

The other concept that we examine isvirtual
memory. Virtual memory allows the computer
to appear to have more memory than it actu-
ally has. This permits programmers to write a
program larger than the physical memory that
the system has and allows large projects to be
implemented on a computer with limited re-
sources.

Figure 5: The translation between virtual or
logical, linear and physical address

3.3 Segmentation and paging mechanisms

In a segmented memory system, the logical ad-
dress of a program is automatically mapped or
translated into the middle 4 GB linear address
space. Each memory reference refers to the
memory in a segment. When programs refer-
ence a memory address, a linear address is pro-
duced by adding the segment base address with
the logical address visible to the programmer.
If pagingis not enabled, at this time, the linear
address is sent to the external address bus of the
processor to access the corresponding physical
address directly.

If it paging is enabled on the processor, the
linear address will be translated by thepag-
ing mechanism to get the final physical cor-
responding physical address. Similar to the
segmentation, paging allow us to relocate each
memory reference. The basic theory of paging
is that the processor divides the whole linear
space into pages of 4 KB. When programs re-
quest memory, the processor allocates memory
in pages for the program.

Since Linux 0.1x kernel uses only onepage di-
rectory, the mapping function from linear to
physical space is same for the kernel and pro-
cesses. To prevent tasks from interfering with
each other and the kernel, they have to occupy
different ranges in the linear address space.
The Linux 0.1x kernel allocates 64MB of lin-
ear space for each task in the system, the sys-
tem can therefor hold at most 64 simultane-
ous tasks (64MB X 64 = 4G) before occupying
the entire Linear address space as illustrated in
Figure 6.

Figure 6: The usage of linear address space in
the Linux 0.1x kernel

3.4 The relationship between virtual, linear
and physical address

We have briefly described the memory seg-
mentation and paging mechanisms. Now we
will examine the relationship between the ker-
nel and tasks in virtual, linear and physical ad-
dress space. Since the creation oftasks 0and1
are special, we’ll explain them separately.

3.4.1 The address range of kernel

For the code and data in the Linux 0.1x ker-
nel, the initialization inhead.s has already
set the limit for the kernel and data segments
to be 16MB in size. These two segments over-
lap at the same linear address space starting
from address 0. Thepage directoryandpage
table for kernel space are mapped to 0-16MB
in physical memory (the same address range in
both spaces). This is all of the memory that
the system contains. Since one page table can
manage or map 4MB, the kernel code and data
occupies four entries in thepage directory. In
other words, there are four secondary page ta-
bles with 4MB each. As a result, the address in
the kernel segment is the same in the physical
memory. The relationship of these three ad-
dress spaces in the kernel is depicted in Figure
7.

Figure 7: The relationship of the three address
spaces in a 0.1x kernel

As seen in Figure 7, the Linux 0.1x kernel
can manage at most 16MB of physical mem-
ory in 4096 page frames. As explained ear-
lier, we know that: (1) the address range of
kernel code and data segments are the same
as in the physical memory space. This con-
figuration can greatly reduce the initialization
operations the kernel must perform. (2)GDT
and Interrupt Descriptor Table (IDT) are in the
kernel data segment, thus they are located in
the same address in both address spaces. In
the execution of code in setup.s in real mode,
we have setup both temporaryGDTandIDT at
once. These are required before entering pro-
tected mode. Since they are located by physical
address0x90200 and this will be overlapped
and used for block device cache, we have to
recreateGDT and IDT in head.s after en-
tering protected mode. The segment selectors
need to be reloaded too. Since the locations of
the two tables do not change after entering pro-

tected mode, we do not need to move or recre-
ate them again. (3) All tasks excepttask 0need
additional physical memory pages in different
linear address space locations. They need the
memory management module to dynamically
setup their own mapping entries in thepage di-
rectoryandpage table. Although the code and
static data oftask 1are located in kernel space,
we need to obtain new pages to prevent inter-
ference withtask 0. As a result,task 1also
needs its own page entries.

While the default manageable physical mem-
ory is 16MB, a system need not contain 16MB
memory. A machine with only 4MB or even
2MB could run Linux 0.1x smoothly. For a
machine with only 4MB, the linear address
range 4MB to 16MB will be mapped to nonex-
istent physical space by the kernel. This
does not disrupt or crash the kernel. Since
the kernel knows the exact physical memory
size from the initialization stage, no pages
will be mapped into this nonexistent physical
space. In addition, since the kernel has limited
the maximum physical memory to be 16MB
at boot time (inmain() corresponding to
startkernel()), memory over 16MB will
be left unused. By adding some page entries
for the kernel and changing some of the ker-
nel source, we certainly can make Linux 0.1x
support more physical memory.

3.4.2 The address space relationship for
task 0

Task 0is artificially created or configured and
run by using a special method. The limits of its
code and data segments are set to the 640KB
included in the kernel address space. Nowtask
0 can use the kernel page entries directly with-
out the need for creating new entries for itself.
As a result, its segments are overlapped in lin-
ear address space too. The three space relation-

Figure 8: The relationship of three address
spaces for task 0

ship is shown in Figure 8.

As task 0 is totally contained in the kernel
space, there is no need to allocate pages from
the main memory area for it. The kernel stack
and the user stack fortask 0are included the
kernel space.Task 0still has read and write
rights in the stacks since the page entries used
by the kernel space have been initialized to be
readable and writable with user privileges. In
other words, the flags in page entries are set as
U/S=1, R/W=1.

3.4.3 The address space relationship for
task 1

Similar totask 0, task 1is also a special case in
which the code and data segment are included
in kernel module. The main difference is that
when forkingtask 1, one free page is allocated
from the main memory area to duplicate and
storetask 0’s page table entries fortask 1. As

Figure 9: The relationship of the three address
spaces in task 1

a result,task 1has its ownpage tableentries in
thepage directoryand is located at range from
64MB to 128MB (actually 64MB to 64MB +
640KB) in linear address space. One additional
page is allocated for task 1 to store itstask
structure (PCB)and is used as its kernel mode
stack. The task’sTask State Segment (TSS)is
also contained in task’s structure as illustrated
in Figure 9.

Task 1 and task 0 will share their
user stack user_stack[] (refer to
kernel/sched.c , lines 67-72). Thus, the
stack space should be‘ ‘clean” beforetask 1
uses it to ensure that there is no unnecessary
data on the stack. When forkingtask 1, the
user stack is shared betweentask 0and task
1. However whentask 1starts running, the
stack operating intask 1 would cause the
processor to produce a page fault because the

page entries have been modified to be read
only. The memory management module will
therefor need allocate a free page fortask 1’s
stack.

3.4.4 The address space relationship for
other tasks

For task 2and higher, the parent istask 1or
the init process. As described earlier, Linux
0.1x can have 64 tasks running synchronously
in the system. Now we will detail the address
space usage for these additional tasks.

Beginning withtask 2, if we designatenr as
the task number, the starting location fortask
nr will be at nr * 64MB in linear address
space.Task 2, for example, begins at address
2*64MB = 128MB in the linear address space,
and the limits of code and data segments are set
to 64MB. As a result, the address range occu-
pied bytask 2is from 128MB to 192MB, and
has 64MB/4MB = 16 entries in the page direc-
tory. The code and data segments both map
to the same range in the linear address space.
Thus they also overlap with the same address
range as illustrated in Figure 10.

After task 2has forked, it will call the func-
tion execve() to run a shell program such as
bash. Just after the creation oftask 2and be-
fore callexecve() , task 2is similar totask 1
in the three address space relationship for code
and data segments except the address range oc-
cupied in linear address space has the range
from 128MB to 192MB. Whentask 2’scode
calls execve() to load and run a shell pro-
gram, the page entries are copied fromtask
1 and corresponding memory pages are freed
and new page entries are set for the shell pro-
gram. Figure 10 shows this address space re-
lationship. The code and data segment fortask
1 are replaced with that of the shell program,

Figure 10: The relationship of the three address
spaces in tasks beginning with task 2

Figure 11: The relationship of the three address
space for tasks in newer kernels

and one physical memory page is allocated for
the code of the shell program. Notice that al-
though the kernel has allocated 64MB linear
space fortask 2, the operation of allocating ac-
tual physical memory pages for code and data
segments of the shell program is delayed until
the program is running. This delayed alloca-
tion is called demand paging.

Beginning with kernel version 0.99.x, the us-
age of memory address space changed. Each
task can use the entire 4G linear space by
changing the page directory for each tasks as
illustrated in Figure 11. There are even more
changes are in current kernels.

4 Stack Usage

This section describes several different meth-
ods used during the processing of kernel boot-

ing and during normal task stack operations.
Linux 0.1x kernel uses four different kinds of
stacks: the temporary stack used for system
booting and initialization under real address
mode; The kernel initialization stack used af-
ter the kernel enters protected mode, and the
user stack for task 0 after moving into task 0;
The kernel stack of each task used when run-
ning in the kernel and the user stacks for each
task except for tasks 0 and 1.

There are two main reasons for using four dif-
ferent stacks (two used only temporarily for
booting) in Linux. First, when entering pro-
tected from real mode, the addressing method
used by the processor has changed. Thus
the kernel needs to rearrange the stack area.
In addition, to solve the protection problems
brought by the new privilege level on proces-
sor, we need to use different stacks for ker-
nel code at level 0 and for user code at level
3 respectively. When a task runs in the kernel,
it uses the kernel mode stack pointed by the
values inss0 andesp0 fields of itsTSSand
stores the task’s user stack pointer in this stack.
When the control returns to the user code or to
level 3, the user stack pointer will be popped
out, and the task continues to use the user stack.

4.1 Initialization period

When theROM BIOScode boots and loads
the bootsect into memory at physical address
0x7C00 , no stack is used until it is moved
to the location0x9000:0 . The stack is then
set at0x9000:0xff00 . (refer to line 61 –
62 in boot/bootsect.s). After control is
transferred tosetup.s , the stack remains un-
changed.

When control is transferred tohead.s , the
processor runs in protected mode. At this
time, the stack is setup at the location of

Figure 12: The stack used for kernel code after
entering protected mode

user_stack[] in the kernel code segment
(line 31 inhead.s). The kernel reserves one
4 KB page for the stack defined at line 67 – 72
in sched.c as illustrated in Figure 12.

This stack area is still used after the control
transfers intoinit/main.c until the exe-
cution ofmove_to_user_mode() to hand
the control over totask 0. The above stack is
then used as a user stack fortask 0.

4.2 Task stacks

For the processor privilege levels 0 and 3 used
in Linux, each task has two stacks: kernel
mode stack and user mode stack used to run
kernel code and user code respectively. Other
than the privilege levels, the main difference

Figure 13: User stack in task’s logical space

is that the size of kernel mode stack is smaller
than that of the user mode stack. The former is
located at the bottom in a page coexisting with
task’s structure, and no more than 4KB in size.
The later can grow down to nearly 64MB in
user space.

As described, each task has its own 64MB log-
ical or linear address space except fortask 0
and1. When a task was created, the bottom of
its user stack is located close to the end of the
64MB space. The top portion of the user space
contains additional environmental parameters
and command line parameters in a backwards
orientation, and then the user stack as illus-
trated in Figure 13.

Task code at privilege level 3 uses this stack all
of the time. Its corresponding physical mem-
ory page is mapped by paging management
code in the kernel. Since Linux utilizes the
copy-on-write[3] method, both the parent and
child process share the same user stack mem-
ory until one of them perform a write opera-
tion on the stack. Then the memory manager
will allocate and duplicate the stack page for
the task.

Similar to the user stack, each task has its own
kernel mode stackused when operating in the
kernel code. This stack is located in the mem-
ory to pointed by the values inss0 , esp0
fields in task’sTSS. ss0 is the stack segment
selector like thedata selectorin the kernel.
esp0 indicates the stack bottom. Whenever

Figure 14: The kernel mode stack of a task

control transfers to the kernel code from user
code, the kernel mode stack for the task al-
ways starts fromss0:esp0 , giving the ker-
nel code an empty stack space. The bottom of
a task’s kernel stack is located at the end of a
memory page where the task’s data structure
begins. This arrangement is setup by making
the privilege level 0 stack pointer inTSSpoint
to the end of the page occupied by the task’s
data structure when forking a new task. Refer
to line 93 inkernel/fork.c as below:

p→tss.esp0 = PAGE_SIZE+(long)p;

p→tss.ss0 = 0x10;

p is the pointer of the new task structure,tss
is the structure of the task status segment. The
kernel request a free page to store the task
structure pointed byp. The tss structure is
a field in the task structure. The value of
tss.ss0 is set to the selector of kernel data
segment and thetss.esp0 is set to point to
the end of the page as illustrated in Figure 14.

As a matter of fact,tss.esp0 points to the
byte outside of the page as depicted in the fig-
ure. This is because the Intel processor de-
creases the pointer before storing a value on the
stack.

4.3 The stacks used by task 0 and task 1

Both task 0or idle task andtask 1or init task
have some special properties. Althoughtask 0
and task 1have the same code and data seg-
ment and 640KB limits, they are mapped into
different ranges in linear address space. The
code and data segments oftask 0begins at ad-
dress 0, andtask 1 begins at address 64MB
in the linear space. They are both mapped
into the same physical address range from 0
to 640KB in kernel space. After calling the
functionmove_to_user_mode() , the ker-
nel mode stacks oftask 0andtask 1are located
at the end of the page used for storing their task
structures. The user stack oftask 0is the same
stack originally used after entering protected
mode; the space foruser_stack[] array
defined insched.c program. Sincetask 1
copiestask 0’s user stack when forking, they
share the same stack space in physical memory.
When task 1starts running, however, a page
fault exception will occur whentask 1writes to
its user stack because the page entries fortask
1 have been initialized as read-only. At this
moment, the kernel will allocate a free page in
main memory area for the stack oftask 1 in
the exception handler, and map it to the loca-
tion of task 1’s user stack in the linear space.
From now on,task 1has its own separate user
stack page. As a result, the user stack fortask
0 should be “clean” beforetask 1uses the user
stack to ensure that the page of stack duplica-
tion does not contain useless data fortask 1.

The kernel mode stack fortask 0is initialized
in its static data structure. Then its user stack
is set up by manipulating the contents of the
stack originally used after entering protected
mode and emulating the interrupt return oper-
ation usingIRET instruction as illustrated in
Figure 15.

As we know, changing the privilege level will

031

Figure 15: Stack contents while returning from
privilege level 0 to 3

change the stack and the old stack pointers
will be stored onto the new stack. To emu-
late this case, we first push thetask 0’s stack
pointer onto the stack, then the pointer of the
next instruction intask 0. Finally we run the
IRET instruction. This causes the privilege
level change and control to be transferred to
task 0. In the Figure 15, the oldSSfield stores
the data selector ofLDT for task 0(0x17) and
the oldESPfield value is not changed since the
stack will be used as the user stack fortask 0.
The oldCSfield stores the code selector (0x0f)
for task 0. The oldEIP points to the next in-
struction to be executed. After the manipula-
tion, aIRET instruction switches the privileges
from level 0 to level 3. The kernel begins run-
ning in task 0.

4.4 Switch between kernel mode stack and
user mode stack for tasks

In the Linux 0.1x kernel, all interrupts and ex-
ceptions handlers are in mode 0 so they belong
to the operating system. If an interrupt or ex-
ception occurs while the system is running in
user mode, then the interrupt or exception will
cause a privilege level change from level 3 to
level 0. The stack is then switched from the
user mode stack to the kernel mode stack of the

Figure 16: Switching between the kernel stack
and user stack for a task

task. The processor will obtain the kernel stack
pointersss0 and esp0 from the task’sTSS
and store the current user stack pointers into
the task’s kernel stack. After that, the proces-
sor pushes the contents of the currentEFLAGS
register and the next instruction pointers onto
the stack. Finally, it runs the interrupt or ex-
ception handler.

The kernelsystem callis trapped by using a
software interrupt. Thus anINT 0x80 will
cause control to be transferred to the kernel
code. Now the kernel code uses the current
task’s kernel mode stack. Since the privilege
level has been changed from level 3 to level 0,
the user stack pointer is pushed onto the kernel
mode stack, as illustrated in Figure 16.

If a task is running in the kernel code, then
an interrupt or exception never causes a stack
switch operation. Since we are already in the
kernel, an interrupt or exception will never
cause a privilege level change. We are us-
ing the kernel mode stack of the current task.
As a result, the processor simply pushes the
EFLAGSand the return pointer onto the stack
and starts running the interrupt or exception
handler.

Figure 17: Kernel layout and building

5 Kernel Source Tree

Linux 0.11 kernel is simplistic so the source
tree can be listed and described clearly. Since
the 0.11 kernel source tree only has 14 directo-
ries and 102 source files it is easy to find spe-
cific files in comparison to searching the much
larger current kernel trees. The mainlinux/
directory contains only one Makefile for build-
ing. From the contents of the Makefile we can
see how the kernel image file is built as illus-
trated in Figure 17.

There are three assembly files in theboot/
directory: bootsect.s , setup.s , and
head.s . These three files had correspond-
ing files in the more recent kernel source trees
until 2.6.x kernel. Thefs/ directory contains
source files for implementing aMINIX version
1.0 file system. This file system is a clone of
the traditional UN*X file system and is suit-
able for someone learning to understand how
to implement a usable file system. Figure 18
depicts the relationship of each files in thefs/
directory.

The fs/ files can be divided into four types.
The first is the block cache manager file
buffer.c . The second is the files concern-
ing with low level data operation files such
inode.c . The third is files used to process

Figure 18: File relationships in fs/ directory

Figure 19: Files in the kernel/ directory

data related to char, block devices and regular
files. The fourth is files used to execute pro-
grams or files that are interfaces to user pro-
grams.

The kernel/ directory contains three kinds
of files as depicted in Figure 19.

The first type is files which deal with hard-
ware interrupts and processor exceptions. The
second type is files manipulating system calls
from user programs. The third category is
files implementing general functions such as
scheduling and printing messages from the ker-
nel.

Block device drivers for hard disks, floppy
disks and ram disks reside in a subdirectory
blk_drv/ in the kernel/ , thus the Linux
0.11 kernel supports only three classical block
devices. Because Linux evolved from a ter-
minal emulation program, the serial terminal
driver is also included in this early kernel in
addition to the necessary console character de-
vice. Thus, the 0.11 kernel contains at least
two types of char device drivers as illustrated

Figure 20: Character devices in Linux 0.11 ker-
nel

in Figure 20.

The remaining directories in the kernel source
tree include, init, mm, tools, and
math . Theinclude/ contains the head files
used by the other kernel source files.init/
contains only the kernel startup filemain.c ,
in which, all kernel modules are initialized and
the operating system is prepared for use. The
mm/ directory contains two memory manage-
ment files. They are used to allocate and free
pages for the kernel and user programs. As
mentioned, the mm in 0.11 kernel uses demand
paging technology. Themath/ directory only
contains math source code stubs as 387 emula-
tion did not appear until the 0.12 kernel.

6 Experiments with the 0.1x kernel

To facilitate understanding of the Linux 0.11
kernel implementation, we have rebuilt a
runnable Linux 0.11 system, and designed sev-
eral experiments to watch the kernel internal
activities using theBochs PC emulator. Bochs
is excellent for debugging operating systems.
TheBochssoftware package contains an inter-

nal debugging tool, which we can use to ob-
serve the dynamic data structures in the kernel
and examine the contents of each register on
the processor.

It is an interesting exercise to install the Linux
0.11 system from scratch. It is a good learning
experience to build a root file system image file
under Bochs.

Modifying and compiling the kernel source
code are certainly the most important experi-
ments for learning about operating systems. To
facilitate the process, we provide two environ-
ments in which, one can easily compile the ker-
nel. One is the originalGNU gcc environment
under Linux 0.11 system in Bochs. The other
is for more recent Linux systems such asRed
Hat 9 or Fedora. In the former environment,
the 0.11 kernel source code needs no modifi-
cations to successfully compile. For the later
environment one needs to modify a few lines
of code to correct syntax errors. For people
familiar with MASMandVC environment un-
der windows, we even provide modified 0.11
kernel source code that can compile. Offer-
ing source code compatible with multiple en-
vironments and providing forums for discus-
sion helps popularize linux and the linux com-
munity with new people interested in learning
about operating systems :-)

7 Summary

From observing people taking operating sys-
tem courses with the old Linux kernel, we
found that almost all the students were highly
interested in the course. Some of them even
started programming their own operating sys-
tems.

The 0.11 kernel contains only the basic fea-

tures that an operating system must have. As
a result, there are many important features not
implemented in 0.11 kernel. We now plan to
adopt either the 0.12 or 0.98 kernel for teaching
purposes to include job control, virtualFS, vir-
tual console and even network functions. Due
to time limitations in the course, several simpli-
fications and careful selection of material will
be needed.

References

[1] Albert S. Woodhull Andrew
S. Tanenbaum.OPERATING SYSTEMS:
Design and Implementation.
Prentice-Hall, Inc., 1997.

[2] Patrick P. Gelsinger John H. Crawford.
Programming the 80386. SYBEX Inc.,
1987.

[3] Robert Love.Linux Kernel Development.
Sams Inc., 2004.

[4] M.J.Bach.The Design of Unix Operating
System. Prentice-Hall, Inc., 1986.

[5] Linus Torvalds. LINUX – a free unix-386
kernel. October 1991.

