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Abstract late to each other to fulfill the functions of a

operating system. There are many hidden de-
tails in the system. If one ignores these de-
Dissecting older kernels including their prob-taj|s like a blind men trying to size up the ele-
lems can be educational and an entertaining,ham by taking a part for the whole, its hard
review of where we have been. In this ses+g ynderstand the entire system and is difficult
sion, we examine the older Linux kernel ver-to understand the design and implementations
sion 0.11 and discuss some of our findingsof an actual system. Although one may obtain
The primary reason for selecting this historicalsgme of the operating theory through reading
kernel is that we have found that the current|assical books like the “The design of Unix
kernel's vast quantity of source code is far to0gperating system,” [4] the composition and in-
complex for hands-on learning purposes. SinCgernal relationships in an operating system are
the 0.11 kernel has Only 14,000 lines of COdenot easy to Comprehend_ Andrew Tanenbaum’
we can easily describe it in detail and performihe author of MINIX[1], once said in his book,
some meaningful experiments with a runnableteaching only theory leaves the student with a
system effienctly. We then examine several astopsided view of what an operating system is
pects of the kernel including the memory man-rea|ly like.” and “Subjects that really are im-
agement, stack usage and other aspects of thyrtant, such as I/0O and file systems, are gen-
Linux kernel. Next we explain several aspectserally neglected because there is little theory
of using Bochs emulator to perform experi- ahout them.” As a result, one may not know
ments with the Linux 0.11 kernel. Finally, we the tricks involved in implementing a real op-
present and describe the structure of the LinU)érating system. Only after reading the entire
kernel source inClUding the lib/ directory. source code of a Operating System, may one get
a feeling of sudden enlightened about the ker-
nel.
1 Introduction In 1991 Linus made a similar statements[5] af-
ter distributing kernel version 0.03, “TH&NU
A<ernel (Hurd) will be free, but is currently not

As Linus once said, if one wants to understan ) .
eady, and will be too big to understand and

the details of a software project, one shoul X ) ) .
bro] earn.” Likewise, the current Linux kernel is

“RTFSC - Read The F**king Source Code-”t | t ily understand. Due to th I
The kernel is a complete system, the parts re_OO arge to easily understand. Due to the sma
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2 Linux Kernel Architecture
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" oo Y axis unit: 1000 Lines The Linux kernel is composed of five mod-
ules: task scheduling, memory management,
Figure 1: Lines of code in various kernel ver-file system, interprocess communication (IPC)
sions and network. The task scheduling module is re-
sponsible for controlling the usage of the pro-
cessor for all tasks in the system. The strat-
egy used for scheduling is to provide reason-
amount of code (only 14,000 lines) as shown inable and fair usage between all tasks in the sys-
Figure 1, the usability and the consistency withtem while at the same time insuring the pro-
the current kernel, itis feasible to choose Linuxcessing of hardware operations. The memory
0.11 kernel for students to learn and performmanagement module is used to insure that all
experiments. The features of the 0.11 kernetasks can share the main memory on the ma-
are so limited, it doesn’t even contain job con-chine and provide the support for virtual mem-
trol or virtual memory swapping. It can, how- ory mechanisms. The file system module is
ever, still be run as a complete operating sysused to support the driving of and storage in
tem. As with an introductory book on operat- peripheral devices. Virtual file system mod-
ing systems, we need not deal with the moraules hide the various differences in details of
complicated components such ¥&S, ext3 the hardware devices by providing a universal
networking and more comprehensive memoryfile interface for peripheral storage equipment
management systems in a modern kernel. Aand providing support for multiple formats of
students understand of the main concepts corile systems. ThéPC module is used to pro-
cerning how an operating system is generallywide the means for exchanging messages be-
implemented, they can learn to understand théveen processes. The network interface mod-
advanced parts for themselves. Thus, bothlile provides access to multiple communication
the teaching and learning become more effistandards and supports various types of net-
cient and consume considerably less time. Th&ork hardware.
lower barrier to entry for learning can even
stimulate many young people to take part inThe relationship between these modules is il-
and involve in the Linux activities. lustrated in Figure 2. The lines between them
indicates the dependences of each other. The
From teaching experience and student feeddashed lines and dashed line box indicate the
back, we found the most difficult part of study- part not implemented in Linux 0.1x.
ing the 0.11 kernel is the memory management.
Therefore, in the following sections we mainly The figure shows the scheduling module rela-
deal with how the 0.11 kernel manages andionship with all the other modules in the ker-
uses memory in the protected mode of the Intehel since they all depend on the schedules pro-
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three modules have like relationships with the

schedule module for similar reasons.

Figure 3: Kernel structure framework
The remaining modules have implicit depen-
dences with each other. The scheduling sub-

system needs memory management to adjugfe explain the memorysegmentation, pag-
the physical memory space used by each taslg  multitaskingand the protection mecha-
The IPC subsystem requires the memory manyisms, Finally, we summarize the relationship
agement module to support shared memoryetween virtual, linear, and physical address

communication mechanisms. Virtual file sys-for the code and data in the kernel and for each
tems can also use the network interface to supxgk.

port the network file systenNFS. The mem-

ory management subsystem may also use the

file system to support the swapping of memory3.1  Physical Memory
data blocks.

From the monolithic model structure, we can!n Order to use the physical memory of the ma-

illustrate the main kernel modules in Figure 3¢hine efficiently with Linux 0.1x kernel, the
based on the structure of the Linux 0.11 kerne["€mory is divided into several areas as shown
source code. in Figure 4.

As shown in Figure 4, the kernel code and
data occupies the first portion of the physi-
3 Memory Usage cal memory. This is followed by the cache
used for block devices such as hard disks and
floppy drives eliminating the memory space
In this section, we first describe the usage olised by the adapters aROM BIOS When a
physical memory in Linux 0.1x kernel. Then task needs data from a block device, it will be



main memory dresses composed of tsegment selectand

kernel disk res )

o cache  ram cis area offsetin the segment generated by program.
Y4 Y \ .

Since the two part address can not be used to

| dl L [ (| | [{ | access physical memory directly, this address
en . .

0 640Kb \IMb  4ub 4. 5Mb 16 s referred to as a virtual address and must use

video & BIOS at least one of the address translation mecha-

nisms provided by CPU to map into the phys-
Figure 4: The regions of physical memory !cal memory space. The virtual address space
is composed of thglobal address spacad-
dressed by the descriptors in global descrip-
tor table GDT) and thelocal address space

first read into the cache area from the block deéddressed by the local descriptor tall®T).

vice. When_a task needs_ to output the data Q¢ jnyex part of segment selectdras thir-
a block device, the data is put into the CaCheteen bits and one bit for the table index. The

area glrs:hang th den 'S V\g't[ten !ntg thet_b IOCk_l_dhe'lntel 80X86 processor can then provide a total
VICE Dy the hardware driver in due time. eof 16384 selectors so it can addresses a maxi-

last part of the physical memory is the MaIN -, um of 64T of virtual address space[2]. The

area used dynamically from programs. Wher]ogical address is the offset portion of a virtual

kernel code needs a free memory page, it alsg 14 oc - sometimes this is also referred to as
needs to make a request from the memory man; +,al address

agement subsystem. For a system configurecf
with virtual RAM disksin physical memory,

. Linearaddress is the middle portion of address
space must be reserved in memory.

translation from virtual to physical addresses.
Phvsical . I d by th This address space is addressable by the pro-
ysical memory 1S normally managed by tN€.qqqqr - A program can usel@ical address

) - : TSt offsetin a segment and the base address of
to provide an efficient means for using the sys-

~2~ the segment to get a linear addresspadfjing
E\?vrcr)l :ﬁ:?nuc:fye?ﬁ;nh:gg]rtne;riorﬁiir; Z?;rg;?v'g:;s enabled, the linear address can be translated
. ) : " ~~3o produced a physical address. If {pegingis
mentation and paging. The paging mechanis P Py pging

Wisabled, then the linear address is actually the

's optional and its use Is determined by thesame as physical address. The linear address

system programmer. The Linux operating Sys_space orovided by Intel 80386 is 4 GB.
tem uses both memory segmentation and pag-
ing mechanism approaches for flexibility and

- Physical addresss the address on the proces-
efficiency of memory usage.

sor’s external address bus, and is the final result
of address translation.
3.2 Memory address space
The other concept that we examinevistual
memory Virtual memory allows the computer
To perform address mapping in the Linux ker-to appear to have more memory than it actu-
nel, we must first explain the three differentally has. This permits programmers to write a
address concepts usedviintual or logical ad-  program larger than the physical memory that
dress space, the CRIdear address space, and the system has and allows large projects to be
the actualphysicaladdress space. Thartual implemented on a computer with limited re-
addresses used in virtual address space are agburces.
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3.3 Segmentation and paging mechanisms

In a segmented memory system, the logical ad-
dress of a program is automatically mapped or
translated into the middle 4 GB linear address
space. Each memory reference refers to the
memory in a segment. When programs refer-
ence a memory address, a linear address is pro-
duced by adding the segment base address with
the logical address visible to the programmer.
If pagingis not enabled, at this time, the linear
address is sent to the external address bus of the
processor to access the corresponding physical
address directly.

If it paging is enabled on the processor, the
linear address will be translated by tpag-

ing mechanism to get the final physical cor-
responding physical address. Similar to the
segmentation, paging allow us to relocate each
memory reference. The basic theory of paging
is that the processor divides the whole linear
space into pages of 4 KB. When programs re-
guest memory, the processor allocates memory
in pages for the program.

Since Linux 0.1x kernel uses only opage di-
rectory, the mapping function from linear to
physical space is same for the kernel and pro-

Figure 5: The translation between virtual orcesses. To prevent tasks from interfering with

logical, linear and physical address

each other and the kernel, they have to occupy
different ranges in the linear address space.
The Linux 0.1x kernel allocates 64MB of lin-
ear space for each task in the system, the sys-
tem can therefor hold at most 64 simultane-
ous tasks (64MB X 64 = 4G) before occupying
the entire Linear address space as illustrated in
Figure 6.
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We have briefly described the memory seg- v e 10
. . . 1rtua 1near S1lca
mentation and paging mechanisms. Now we space e Si)ace
will examine the relationship between the ker- S

nel and tasks in virtual, linear and physical ad-

dress space. Since the creationasks Gand1l Figure 7 Thoe 1re|al;1t|onslh|p of the three address
are special, we’ll explain them separately. Spacesinab.ixkerne

3.4.1 The address range of kernel As seen in Figure 7, the Linux 0.1x kernel

can manage at most 16MB of physical mem-

ory in 4096 page frames. As explained ear-
For the code and data in the Linux 0.1x ker-lier, we know that: (1) the address range of

nel, the initialization inhead.s has already kernel code and data segments are the same
set the limit for the kernel and data segmentss in the physical memory space. This con-
to be 16MB in size. These two segments overfiguration can greatly reduce the initialization
lap at the same linear address space startingperations the kernel must perform. @pPT
from address 0. Thpage directoryandpage and Interrupt Descriptor Tablé¥T) are in the
table for kernel space are mapped to 0-16MBkernel data segment, thus they are located in
in physical memory (the same address range ithe same address in both address spaces. In
both spaces). This is all of the memory thatthe execution of code in setup.s in real mode,
the system contains. Since one page table came have setup both tempora®DTandIDT at
manage or map 4MB, the kernel code and datance. These are required before entering pro-
occupies four entries in thgage directory In  tected mode. Since they are located by physical
other words, there are four secondary page taaddres$x90200 and this will be overlapped
bles with 4MB each. As a result, the address irand used for block device cache, we have to
the kernel segment is the same in the physicalecreateGDT and IDT in head.s after en-
memory. The relationship of these three adtering protected mode. The segment selectors
dress spaces in the kernel is depicted in Figureeed to be reloaded too. Since the locations of
7.

the two tables do not change after entering pro-



tected mode, we do not need to move or recre- E:II 4G
ate them again. (3) All tasks excdpsk Oneed ~—
additional physical memory pages in different

linear address space locations. They need the -~

memory management module to dynamically DT Task0

setup their own mapping entries in thage di- Dotn Dataly

rectoryandpage table Although the code and Codo Seg. ~ --ngM
static data ofask lare located in kernel space, [

LDTO
TSSO

we need to obtain new pages to prevent inter-
ference withtask O As a result,task lalso

needs its own page entries. KData T2 |640K
KCode

While the default manageable physical mem- | NULL N

ory is 16MB, a system need not contain 16MB Virtual  Linear Ehysiﬂﬂ

memory. A machine with only 4MB or even Space space space

2MB could run Linux 0.1x smoothly. For a

machine with only 4MB, the linear addressfigure 8: The relationship of three address
range 4MB to 16MB will be mapped to nonex- gnaces for task 0

istent physical space by the kernel. This

does not disrupt or crash the kernel. Since

the kernel knows the exact physical memory o

size from the initialization stage, no pagesShiP is shown in Figure 8.

will be mapped into this nonexistent physical

space. In addition, since the kernel has limited®S 1@sk Ois totally contained in the kernel
the maximum physical memory to be 16MB SPace, there is no need to allocate pages from
at boot time ( inmain() corresponding to the main memory area for it. The kernel stack

startkernel() ), memory over 16MB will and the user stack faask Oare included the

be left unused. By adding some page entriegernel_space.Task Ogtill has read and _Write
for the kernel and changing some of the kerfights in the stacks since the page entries used

nel source, we certainly can make Linux 0.1xPY the kernel space have been initialized to be
support more physical memory. readable and writable with user privileges. In

other words, the flags in page entries are set as
U/S=1, R/IW=1

3.4.2 The address space relationship for
task O
3.4.3 The address space relationship for

. o . task 1
Task Qis artificially created or configured and

run by using a special method. The limits of its

code and data segments are set to the 640KBimilar totask Q task 1lis also a special case in
included in the kernel address space. Nask which the code and data segment are included
0 can use the kernel page entries directly within kernel module. The main difference is that
out the need for creating new entries for itself.when forkingtask 1 one free page is allocated
As a result, its segments are overlapped in linfrom the main memory area to duplicate and
ear address space too. The three space relatiostoretask Os page table entries faask 1 As



4G page entries have been modified to be read
s only. The memory management module will
Tuskl therefor need allocate a free page fask 1's
Lo 64M+640K stack.
Data| \
Seg.| ! |
GDT / \ "
e \ . .
LDT PN 3.4.4 The address space relationship for
Datal 1 /[ other tasks
Code / Vi
LDT1 [ Seg. |/ g G
551 ",.;;'? W For task 2and higher, the parent issk 1or
LDTO S Y AN the init process. As described earlier, Linux
1550 TSS1|¢ \‘ ! 0.1x can have 64 tasks running synchronously
'Y p 640K in the system. Now we will detail the address
KData \coce space usage for these additional tasks.
KCode ' data
Y _— . . .
AlkE v _ R 0 Beginning withtask 2 if we designatenr as
irtual  Linear  Physical the task number, the starting location fask
space space space

nr will be atnr * 64MB in linear address

space.Task 2 for example, begins at address

Figure 9: The relationship of the three addres2*64MB = 128MB in the linear address space,
spaces intask 1

and the limits of code and data segments are set
to 64MB. As a result, the address range occu-
pied bytask 2is from 128MB to 192MB, and
has 64MB/4MB = 16 entries in the page direc-
aresulttask 1has its owrpage tableentries in

tory. The code and data segments both map
the page directoryand is located at range from to the same range in the linear address space

64MB to 128MB (actually 64MB to 64MB + Thus they also overlap with the same address
640KB) in linear address space. One additionatange as illustrated in Figure 10.

page is allocated for task 1 to store ttsk

structure (PCB)and is used as its kernel mode After task 2has forked, it will call the func-
stack. The task’'Jask State Segment (TSS) tionexecve() torun a shell program such as
also contained in task’s structure as illustratedash. Just after the creation takk 2and be-

in Figure 9. fore callexecve() ,task 2is similar totask 1

in the three address space relationship for code
Task 1 and task O will share their anddata segments exceptthe addressrange oc-
user stack user_stack]] ( refer to cupied in linear address space has the range
kernel/sched.c , lines 67-72). Thus, the from 128MB to 192MB. Whertask 2'scode
stack space should béclean” beforetask 1

callsexecve() to load and run a shell pro-
uses it to ensure that there is no unnecessagram, the page entries are copied fréask

data on the stack. When forkirtgsk 1 the 1 and corresponding memory pages are freed
user stack is shared betwetask Oandtask and new page entries are set for the shell pro-
1. However whentask 1starts running, the gram. Figure 10 shows this address space re-
stack operating intask 1 would cause the lationship. The code and data segmenttémsk
processor to produce a page fault because thHeare replaced with that of the shell program,
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%gg 4 N and one physical memory page is allocated for
D10 the code of the shell program. Notice that al-
1550 . though the kernel has allocated 64MB linear
~ 610K space fotask 2 the operation of allocating ac-
KData tual physical memory pages for code and data
KCode segments of the shell program is delayed until
NULL . 0 the program is running. This delayed alloca-
Virtual Linear Physical tion is called demand paging.
space space space

Beginning with kernel version 0.99.x, the us-
Figure 10: The relationship of the three addres§9€ 0f memory address space changed. Each
spaces in tasks beginning with task 2 task can use the entire 4G linear space by
changing the page directory for each tasks as

illustrated in Figure 11. There are even more
changes are in current kernels.

4 Stack Usage

This section describes several different meth-
ods used during the processing of kernel boot-



ing and during normal task stack operations. system module

Linux 0.1x kernel uses four different kinds of (e ] Oxleed0
stacks: the temporary stack used for system 1
booting and initialization under real address esp N Data

mode; The kernel initialization stack used af- Date aren for user_stack[1k]

ter the kernel enters protected mode, and the kernel. mm. £, < one page

user stack for task 0 after moving into task O; T Data

The kernel stack of each task used when run- *task(]

ning in the kernel and the user stacks for each task 0 init data

task except for tasks 0 and 1. > /L 0x17000
There are two main reasons for using four dif- Code for 4

ferent stacks (two used only temporarily for ~ kernel,mm, fs. Code

booting) in Linux. First, when entering pro- q Ox664c
tected from real mode, the addressing method ( GDT (2k)

used by the processor has changed. ThusCode & data of IDT (2k)

the kernel needs to rearrange the stack area head progran. Code and data

In addition, to solve the protection problems Page tables (4k*4)
brought by the new privilege level on proces- Page directory(4k)[ o oo

sor, we need to use different stacks for ker-

nel code at level 0 and for user code at level .

3 respectively. When a task runs in the kernel,':'gur_e' 12: The stack used for kernel code after

it uses the kernel mode stack pointed by théeNtering protected mode

values inssO andespO fields of itsTSSand

stores the task’s user stack pointer in this stack.

When the control returns to the user code or taiser_stack(] in the kernel code segment

level 3, the user stack pointer will be popped(line 31 inhead.s ). The kernel reserves one

out, and the task continues to use the user stack.KB page for the stack defined at line 67 — 72
in sched.c as illustrated in Figure 12.

4.1 Initialization period This stack area is still used after the control
transfers intoinit/main.c until the exe-
cution ofmove_to_user_mode()  to hand

When theROM BIOScode boots and loads the control over tdask O The above stack is

the bootsect into memory at physical addresshen used as a user stack fask Q

0x7CO00, no stack is used until it is moved

to the location0x9000:0 . The stack is then

set atOx9000:0xff00 . (refer to line 61 — 4.2 Task stacks

62 in boot/bootsect.s ). After control is
transferred teetup.s , the stack remains un-
changed. For the processor privilege levels 0 and 3 used

in Linux, each task has two stacks: kernel
When control is transferred tbead.s , the mode stack and user mode stack used to run
processor runs in protected mode. At thiskernel code and user code respectively. Other
time, the stack is setup at the location ofthan the privilege levels, the main difference
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is that the size of kernel mode stack is smaller
than that of the user n"_lode stack. Th(_a' fprme_r IS Figure 14: The kernel mode stack of a task
located at the bottom in a page coexisting with
task’s structure, and no more than 4KB in size.
The later can grow down to nearly 64MB in
user space.
control transfers to the kernel code from user
As described, each task has its own 64MB logcode, the kernel mode stack for the task al-
ical or linear address space except fask 0 ways starts fronss0:esp0 , giving the ker-
andl. When a task was created, the bottom ohel code an empty stack space. The bottom of
its user stack is located close to the end of tha task’s kernel stack is located at the end of a
64MB space. The top portion of the user spacenemory page where the task’s data structure
contains additional environmental parameterdegins. This arrangement is setup by making
and command line parameters in a backwardthe privilege level 0 stack pointer iRSSpoint
orientation, and then the user stack as illusto the end of the page occupied by the task’s
trated in Figure 13. data structure when forking a new task. Refer
to line 93 inkernel/fork.c as below:
Task code at privilege level 3 uses this stack all
of the time. Its corresponding physical mem- p—tss.esp0 = PAGE_SIZE+(long)p;
ory page is mapped by paging management p—tss.ssO = 0x10;
code in the kernel. Since Linux utilizes the
copy-on-writ¢3] method, both the parent and p is the pointer of the new task structutss
child process share the same user stack mens the structure of the task status segment. The
ory until one of them perform a write opera- kernel request a free page to store the task
tion on the stack. Then the memory managestructure pointed by. The tss structure is
will allocate and duplicate the stack page fora field in the task structure. The value of
the task. tss.ssO is set to the selector of kernel data
segment and thiss.esp0 is set to point to
Similar to the user stack, each task has its owthe end of the page as illustrated in Figure 14.
kernel mode stacksed when operating in the
kernel code. This stack is located in the mem-As a matter of fact{ss.espO  points to the
ory to pointed by the values issO, espO0  byte outside of the page as depicted in the fig-
fields in task’'sTSS ssO is the stack segment ure. This is because the Intel processor de-
selector like thedata selectorin the kernel. creases the pointer before storing a value on the
esp0 indicates the stack bottom. Wheneverstack.



4.3 The stacks used by task 0 and task 1

& O« spo - (ss:85)
old Ss
Both task Oor idle task andtask 1or init task old ESP
have some special properties. Althougisk O EFLAGS
andtask 1lhave the same code and data seg- old €S
ment and 640KB limits, they are mapped into old EIP

SP1 — Before IRET

A

different ranges in linear address space. The
code and data segmentstatk Obegins at ad-
dress 0, andask 1begins at address 64MB
in the linear space. They are both mappedrigure 15: Stack contents while returning from
into the same physical address range from @rivilege level O to 3

to 640KB in kernel space. After calling the

functionmove_to_user_mode() , the ker-

nel mode stacks dask Oandtask lare located change the stack and the old stack pointers

atthe end of the page used for storing their task . e stored onto the new stack. To emu-
structures. The user stacktakk Ois the same late this case, we first push thask Os stack

stack originally used after entering IC’rOt(':'Ctedpointer onto the stack, then the pointer of the
mode; the space fonser_stack(] array  next instruction intask Q Finally we run the

defiped inksched.c proErar:. ?inﬁgaSkhl IRET instruction. This causes the privilege
copiestask 0s user stack when forking, they level change and control to be transferred to

share the same stack space in physical MEMONSsk 0 In the Figure 15, the ol&Sfield stores

When task _1star_ts running, however,_ a4 Pa9€he data selector dfDT for task 0(0x17) and
_fault exception will occur whetask 1wr_|tes 0 the oldESPfield value is not changed since the
its user stack because the page entriesdsk - 1 will be used as the user stack fask 0

1 have been initialize.d as read-only. At thi.SThe oldCSfield stores the code selector (0xO0f)
moment, the kernel will allocate a free page iNtor task 0 The oldEIP points to the next in-
main memory area for the stack tisk 1in struction to be executed. After the manipula-

the exception handler, and map it to the locay;,, 4 |RETinstruction switches the privileges
tion of task Is user stack in the linear SPACE. fom level O to level 3. The kernel begins run-
From now ontask 1has its own separate userningl intask 0

stack page. As a result, the user stacktémk
0 should be “clean” befortask luses the user

stack to ensure that the page of stack duplicag 4 switch between kernel mode stack and
tion does not contain useless datatisk 1 user mode stack for tasks

The kernel mode stack fdask Ois initialized
in its static data structure. Then its user stackn the Linux 0.1x kernel, all interrupts and ex-
is set up by manipulating the contents of theceptions handlers are in mode 0 so they belong
stack originally used after entering protectedto the operating system. If an interrupt or ex-
mode and emulating the interrupt return oper<ception occurs while the system is running in
ation usinglRET instruction as illustrated in user mode, then the interrupt or exception will
Figure 15. cause a privilege level change from level 3 to
level 0. The stack is then switched from the
As we know, changing the privilege level will user mode stack to the kernel mode stack of the
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Figure 17: Kernel layout and building

Figure 16: Switching between the kernel stack
and user stack for a task
5 Kernel Source Tree

Linux 0.11 kernel is simplistic so the source
task. The processor will obtain the kernel stackree can be listed and described clearly. Since
pointersssO andesp0 from the task’sTSS the 0.11 kernel source tree only has 14 directo-
and store the current user stack pointers intoies and 102 source files it is easy to find spe-
the task’s kernel stack. After that, the proces<ific files in comparison to searching the much
sor pushes the contents of the curleRLAGS  larger current kernel trees. The maimux/
register and the next instruction pointers ontadirectory contains only one Makefile for build-
the stack. Finally, it runs the interrupt or ex-ing. From the contents of the Makefile we can
ception handler. see how the kernel image file is built as illus-

trated in Figure 17.

The kernelsystem callis trapped by using a
software interrupt. Thus alNT 0x80 will  There are three assembly files in theot/
cause control to be transferred to the kernetlirectory: bootsect.s , setup.s , and
code. Now the kernel code uses the currenhead.s . These three files had correspond-
task’s kernel mode stack. Since the privilegeing files in the more recent kernel source trees
level has been changed from level 3 to level Ountil 2.6.x kernel. Thds/ directory contains
the user stack pointer is pushed onto the kernedource files for implementingINIX version
mode stack, as illustrated in Figure 16. 1.0 file system. This file system is a clone of
the traditional UN*X file system and is suit-
If a task is running in the kernel code, thenable for someone learning to understand how
an interrupt or exception never causes a stacto implement a usable file system. Figure 18
switch operation. Since we are already in thadepicts the relationship of each files in fisé
kernel, an interrupt or exception will never directory.
cause a privilege level change. We are us-
ing the kernel mode stack of the current taskThefs/ files can be divided into four types.
As a result, the processor simply pushes thd@he first is the block cache manager file
EFLAGSand the return pointer onto the stackbuffer.c . The second is the files concern-
and starts running the interrupt or exceptioning with low level data operation files such
handler. inode.c . The third is files used to process
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Figure 19: Files in the kernel/ directory

data related to char, block devices and regular
files. The fourth is files used to execute pro-
grams or files that are interfaces to user pro-
grams.

The kernel/  directory contains three kinds
of files as depicted in Figure 19.

The first type is files which deal with hard-
ware interrupts and processor exceptions. The
second type is files manipulating system calls
from user programs. The third category is
files implementing general functions such as
scheduling and printing messages from the ker-
nel.

Block device drivers for hard disks, floppy
disks and ram disks reside in a subdirectory
blk_drv/ in thekernel/ , thus the Linux
0.11 kernel supports only three classical block
devices. Because Linux evolved from a ter-
minal emulation program, the serial terminal
driver is also included in this early kernel in
addition to the necessary console character de-
vice. Thus, the 0.11 kernel contains at least
two types of char device drivers as illustrated
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nal debugging tool, which we can use to ob-
serve the dynamic data structures in the kernel
and examine the contents of each register on

the processor.

e - O = It is an interesting exercise to install the Linux
P y console. ¢ | % 0.11 system from scratch. It is a good learning
\ ] A ' experience to build a root file system image file
N, rs_io.s | % |keyboard.S| / under Bochs.

Serial driver Console driver Modifying and compiling the kernel source

code are certainly the most important experi-
ments for learning about operating systems. To

Figure 20: Character devicesin Linux0.11 ker-__ ~.. . :
facilitate the process, we provide two environ-

nel ments in which, one can easily compile the ker-
nel. One is the originaGNU gcc environment
in Figure 20. under Linux 0.11 system in Bochs. The other

is for more recent Linux systems suchRed
Hat 9 or Fedora In the former environment,

The remaining directories in the kernel source -
tree include, init, mm, tools, and the 0.11 kernel source code needs no modifi-

math . Theinclude/  contains the head files cations to successfully compile. For the later
used .by the other kernel source fildsit/ environment one needs to modify a few lines

contains only the kernel startup fifeain.c ]?f c_?de tc_)thccl\)/:'ro\escltwsynﬁl/éerro_rs. For tpeople
in which, all kernel modules are initialized and amiliar wi an environment un-

the operating system is prepared for use. Th er wllndows, we devi? ?rowde moql'f'edgf'fll
mm/ directory contains two memory manage- ernel source code that can complie. er

ment files. They are used to allocate and fred 9 Source code compatible with multiple en-

pages for the kernel and user programs Aé}/lronments and providing forums for discus-
' aion helps popularize linux and the linux com-

munity with new people interested in learning

paging technology. Thmath/ directory only g_bout operating systems )

contains math source code stubs as 387 emul
tion did not appear until the 0.12 kernel.

7 Summary
6 Experiments with the 0.1x kernel

From observing people taking operating sys-
To facilitate understanding of the Linux 0.11 tem courses with the old Linux kernel, we
kernel implementation, we have rebuilt afound that almost all the students were highly
runnable Linux 0.11 system, and designed sevinterested in the course. Some of them even
eral experiments to watch the kernel internalstarted programming their own operating sys-
activities using thdochs PC emulatorBochs tems.
is excellent for debugging operating systems.
The Bochssoftware package contains an inter-The 0.11 kernel contains only the basic fea-



tures that an operating system must have. As
a result, there are many important features not
implemented in 0.11 kernel. We now plan to
adopt either the 0.12 or 0.98 kernel for teaching
purposes to include job control, virtuas, vir-

tual console and even network functions. Due
to time limitations in the course, several simpli-
fications and careful selection of material will
be needed.

References

[1] Albert S. Woodhull Andrew
S. TanenbaumOPERATING SYSTEMS:
Design and Implementation
Prentice-Hall, Inc., 1997.

[2] Patrick P. Gelsinger John H. Crawford.
Programming the 80386SYBEX Inc.,
1987.

[3] Robert Love.Linux Kernel Development
Sams Inc., 2004.

[4] M.J.Bach.The Design of Unix Operating
SystemPrentice-Hall, Inc., 1986.

[5] Linus Torvalds. LINUX — a free unix-386
kernel. October 1991.



