/* * linux/kernel/tty_io.c * * Copyright (C) 1991, 1992 Linus Torvalds */ /* * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles * or rs-channels. It also implements echoing, cooked mode etc. * * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0. * * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the * tty_struct and tty_queue structures. Previously there was a array * of 256 tty_struct's which was statically allocated, and the * tty_queue structures were allocated at boot time. Both are now * dynamically allocated only when the tty is open. * * Also restructured routines so that there is more of a separation * between the high-level tty routines (tty_io.c and tty_ioctl.c) and * the low-level tty routines (serial.c, pty.c, console.c). This * makes for cleaner and more compact code. -TYT, 9/17/92 * * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines * which can be dynamically activated and de-activated by the line * discipline handling modules (like SLIP). * * NOTE: pay no attention to the line discpline code (yet); its * interface is still subject to change in this version... * -- TYT, 1/31/92 * * Added functionality to the OPOST tty handling. No delays, but all * other bits should be there. * -- Nick Holloway , 27th May 1993. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "vt_kern.h" #define MAX_TTYS 256 struct tty_struct *tty_table[MAX_TTYS]; struct termios *tty_termios[MAX_TTYS]; /* We need to keep the termios state */ /* around, even when a tty is closed */ struct tty_ldisc ldiscs[NR_LDISCS]; /* line disc dispatch table */ int tty_check_write[MAX_TTYS/32]; /* bitfield for the bh handler */ /* * fg_console is the current virtual console, * redirect is the pseudo-tty that console output * is redirected to if asked by TIOCCONS. */ int fg_console = 0; struct tty_struct * redirect = NULL; struct wait_queue * keypress_wait = NULL; static void initialize_tty_struct(int line, struct tty_struct *tty); static void initialize_termios(int line, struct termios *tp); static int tty_read(struct inode *, struct file *, char *, int); static int tty_write(struct inode *, struct file *, char *, int); static int tty_select(struct inode *, struct file *, int, select_table *); static int tty_open(struct inode *, struct file *); static void tty_release(struct inode *, struct file *); int tty_register_ldisc(int disc, struct tty_ldisc *new_ldisc) { if (disc < N_TTY || disc >= NR_LDISCS) return -EINVAL; if (new_ldisc) { ldiscs[disc] = *new_ldisc; ldiscs[disc].flags |= LDISC_FLAG_DEFINED; } else memset(&ldiscs[disc], 0, sizeof(struct tty_ldisc)); return 0; } void put_tty_queue(char c, struct tty_queue * queue) { int head; unsigned long flags; save_flags(flags); cli(); head = (queue->head + 1) & (TTY_BUF_SIZE-1); if (head != queue->tail) { queue->buf[queue->head] = c; queue->head = head; } restore_flags(flags); } int get_tty_queue(struct tty_queue * queue) { int result = -1; unsigned long flags; save_flags(flags); cli(); if (queue->tail != queue->head) { result = 0xff & queue->buf[queue->tail]; queue->tail = (queue->tail + 1) & (TTY_BUF_SIZE-1); } restore_flags(flags); return result; } /* * This routine copies out a maximum of buflen characters from the * read_q; it is a convenience for line disciplins so they can grab a * large block of data without calling get_tty_char directly. It * returns the number of characters actually read. */ int tty_read_raw_data(struct tty_struct *tty, unsigned char *bufp, int buflen) { int result = 0; unsigned char *p = bufp; unsigned long flags; int head, tail; save_flags(flags); cli(); tail = tty->read_q.tail; head = tty->read_q.head; while ((result < buflen) && (tail!=head)) { *p++ = tty->read_q.buf[tail++]; tail &= TTY_BUF_SIZE-1; result++; } tty->read_q.tail = tail; restore_flags(flags); return result; } void tty_write_flush(struct tty_struct * tty) { if (!tty->write || EMPTY(&tty->write_q)) return; if (set_bit(TTY_WRITE_BUSY,&tty->flags)) return; tty->write(tty); if (!clear_bit(TTY_WRITE_BUSY,&tty->flags)) printk("tty_write_flush: bit already cleared\n"); } void tty_read_flush(struct tty_struct * tty) { if (!tty || EMPTY(&tty->read_q)) return; if (set_bit(TTY_READ_BUSY, &tty->flags)) return; ldiscs[tty->disc].handler(tty); if (!clear_bit(TTY_READ_BUSY, &tty->flags)) printk("tty_read_flush: bit already cleared\n"); } static int hung_up_tty_read(struct inode * inode, struct file * file, char * buf, int count) { return 0; } static int hung_up_tty_write(struct inode * inode, struct file * file, char * buf, int count) { return -EIO; } static int hung_up_tty_select(struct inode * inode, struct file * filp, int sel_type, select_table * wait) { return 1; } static int hung_up_tty_ioctl(struct inode * inode, struct file * file, unsigned int cmd, unsigned long arg) { return -EIO; } static int tty_lseek(struct inode * inode, struct file * file, off_t offset, int orig) { return -ESPIPE; } static struct file_operations tty_fops = { tty_lseek, tty_read, tty_write, NULL, /* tty_readdir */ tty_select, tty_ioctl, NULL, /* tty_mmap */ tty_open, tty_release }; static struct file_operations hung_up_tty_fops = { tty_lseek, hung_up_tty_read, hung_up_tty_write, NULL, /* hung_up_tty_readdir */ hung_up_tty_select, tty_ioctl, NULL, /* hung_up_tty_mmap */ tty_open, tty_release }; static struct file_operations vhung_up_tty_fops = { tty_lseek, hung_up_tty_read, hung_up_tty_write, NULL, /* hung_up_tty_readdir */ hung_up_tty_select, hung_up_tty_ioctl, NULL, /* hung_up_tty_mmap */ tty_open, tty_release }; void do_tty_hangup(struct tty_struct * tty, struct file_operations *fops) { int i; struct file * filp; struct task_struct **p; int dev; if (!tty) return; dev = 0x0400 + tty->line; for (filp = first_file, i=0; if_next) { if (!filp->f_count) continue; if (filp->f_rdev != dev) continue; if (filp->f_inode && filp->f_inode->i_rdev == 0x0400) continue; if (filp->f_op != &tty_fops) continue; filp->f_op = fops; } wake_up_interruptible(&tty->secondary.proc_list); wake_up_interruptible(&tty->read_q.proc_list); wake_up_interruptible(&tty->write_q.proc_list); if (tty->session > 0) kill_sl(tty->session,SIGHUP,1); tty->session = 0; tty->pgrp = -1; for (p = &LAST_TASK ; p > &FIRST_TASK ; --p) { if ((*p) && (*p)->tty == tty->line) (*p)->tty = -1; } } void tty_hangup(struct tty_struct * tty) { do_tty_hangup(tty, &hung_up_tty_fops); } void tty_vhangup(struct tty_struct * tty) { do_tty_hangup(tty, &vhung_up_tty_fops); } void tty_unhangup(struct file *filp) { filp->f_op = &tty_fops; } int tty_hung_up_p(struct file * filp) { return ((filp->f_op == &hung_up_tty_fops) || (filp->f_op == &vhung_up_tty_fops)); } /* * Sometimes we want to wait until a particular VT has been activated. We * do it in a very simple manner. Everybody waits on a single queue and * get woken up at once. Those that are satisfied go on with their business, * while those not ready go back to sleep. Seems overkill to add a wait * to each vt just for this - usually this does nothing! */ static struct wait_queue *vt_activate_queue = NULL; /* * Sleeps until a vt is activated, or the task is interrupted. Returns * 0 if activation, -1 if interrupted. */ int vt_waitactive(void) { interruptible_sleep_on(&vt_activate_queue); return (current->signal & ~current->blocked) ? -1 : 0; } #define vt_wake_waitactive() wake_up(&vt_activate_queue) extern int kill_proc(int pid, int sig, int priv); /* * Performs the back end of a vt switch */ void complete_change_console(unsigned int new_console) { unsigned char old_vc_mode; if (new_console == fg_console || new_console >= NR_CONSOLES) return; /* * If we're switching, we could be going from KD_GRAPHICS to * KD_TEXT mode or vice versa, which means we need to blank or * unblank the screen later. */ old_vc_mode = vt_cons[fg_console].vc_mode; update_screen(new_console); /* * If this new console is under process control, send it a signal * telling it that it has acquired. Also check if it has died and * clean up (similar to logic employed in change_console()) */ if (vt_cons[new_console].vt_mode.mode == VT_PROCESS) { /* * Send the signal as privileged - kill_proc() will * tell us if the process has gone or something else * is awry */ if (kill_proc(vt_cons[new_console].vt_pid, vt_cons[new_console].vt_mode.acqsig, 1) != 0) { /* * The controlling process has died, so we revert back to * normal operation. In this case, we'll also change back * to KD_TEXT mode. I'm not sure if this is strictly correct * but it saves the agony when the X server dies and the screen * remains blanked due to KD_GRAPHICS! It would be nice to do * this outside of VT_PROCESS but there is no single process * to account for and tracking tty count may be undesirable. */ vt_cons[new_console].vc_mode = KD_TEXT; clr_vc_kbd_flag(kbd_table + new_console, VC_RAW); vt_cons[new_console].vt_mode.mode = VT_AUTO; vt_cons[new_console].vt_mode.waitv = 0; vt_cons[new_console].vt_mode.relsig = 0; vt_cons[new_console].vt_mode.acqsig = 0; vt_cons[new_console].vt_mode.frsig = 0; vt_cons[new_console].vt_pid = -1; vt_cons[new_console].vt_newvt = -1; } } /* * We do this here because the controlling process above may have * gone, and so there is now a new vc_mode */ if (old_vc_mode != vt_cons[new_console].vc_mode) { if (vt_cons[new_console].vc_mode == KD_TEXT) unblank_screen(); else { timer_active &= ~(1<= NR_CONSOLES) return; /* * If this vt is in process mode, then we need to handshake with * that process before switching. Essentially, we store where that * vt wants to switch to and wait for it to tell us when it's done * (via VT_RELDISP ioctl). * * We also check to see if the controlling process still exists. * If it doesn't, we reset this vt to auto mode and continue. * This is a cheap way to track process control. The worst thing * that can happen is: we send a signal to a process, it dies, and * the switch gets "lost" waiting for a response; hopefully, the * user will try again, we'll detect the process is gone (unless * the user waits just the right amount of time :-) and revert the * vt to auto control. */ if (vt_cons[fg_console].vt_mode.mode == VT_PROCESS) { /* * Send the signal as privileged - kill_proc() will * tell us if the process has gone or something else * is awry */ if (kill_proc(vt_cons[fg_console].vt_pid, vt_cons[fg_console].vt_mode.relsig, 1) == 0) { /* * It worked. Mark the vt to switch to and * return. The process needs to send us a * VT_RELDISP ioctl to complete the switch. */ vt_cons[fg_console].vt_newvt = new_console; return; } /* * The controlling process has died, so we revert back to * normal operation. In this case, we'll also change back * to KD_TEXT mode. I'm not sure if this is strictly correct * but it saves the agony when the X server dies and the screen * remains blanked due to KD_GRAPHICS! It would be nice to do * this outside of VT_PROCESS but there is no single process * to account for and tracking tty count may be undesirable. */ vt_cons[fg_console].vc_mode = KD_TEXT; clr_vc_kbd_flag(kbd_table + fg_console, VC_RAW); vt_cons[fg_console].vt_mode.mode = VT_AUTO; vt_cons[fg_console].vt_mode.waitv = 0; vt_cons[fg_console].vt_mode.relsig = 0; vt_cons[fg_console].vt_mode.acqsig = 0; vt_cons[fg_console].vt_mode.frsig = 0; vt_cons[fg_console].vt_pid = -1; vt_cons[fg_console].vt_newvt = -1; /* * Fall through to normal (VT_AUTO) handling of the switch... */ } /* * Ignore all switches in KD_GRAPHICS+VT_AUTO mode */ if (vt_cons[fg_console].vc_mode == KD_GRAPHICS) return; complete_change_console(new_console); } void wait_for_keypress(void) { sleep_on(&keypress_wait); } void copy_to_cooked(struct tty_struct * tty) { int c, special_flag; unsigned long flags; if (!tty) { printk("copy_to_cooked: called with NULL tty\n"); return; } if (!tty->write) { printk("copy_to_cooked: tty %d has null write routine\n", tty->line); } while (1) { /* * Check to see how much room we have left in the * secondary queue. Send a throttle command or abort * if necessary. */ c = LEFT(&tty->secondary); if (tty->throttle && (c < SQ_THRESHOLD_LW) && !set_bit(TTY_SQ_THROTTLED, &tty->flags)) tty->throttle(tty, TTY_THROTTLE_SQ_FULL); if (c == 0) break; save_flags(flags); cli(); if (tty->read_q.tail != tty->read_q.head) { c = 0xff & tty->read_q.buf[tty->read_q.tail]; special_flag = clear_bit(tty->read_q.tail, &tty->readq_flags); tty->read_q.tail = (tty->read_q.tail + 1) & (TTY_BUF_SIZE-1); restore_flags(flags); } else { restore_flags(flags); break; } if (special_flag) { tty->char_error = c & 3; continue; } if (tty->char_error) { if (tty->char_error == TTY_BREAK) { tty->char_error = 0; if (I_IGNBRK(tty)) continue; if (I_PARMRK(tty)) { put_tty_queue('\377', &tty->secondary); put_tty_queue('\0', &tty->secondary); } put_tty_queue('\0', &tty->secondary); continue; } /* If not a break, then a parity or frame error */ tty->char_error = 0; if (I_IGNPAR(tty)) { continue; } if (I_PARMRK(tty)) { put_tty_queue('\377', &tty->secondary); put_tty_queue('\0', &tty->secondary); put_tty_queue(c, &tty->secondary); } else put_tty_queue('\0', &tty->secondary); continue; } if (I_STRP(tty)) c &= 0x7f; else if (I_PARMRK(tty) && (c == '\377')) put_tty_queue('\377', &tty->secondary); if (c==13) { if (I_CRNL(tty)) c=10; else if (I_NOCR(tty)) continue; } else if (c==10 && I_NLCR(tty)) c=13; if (I_UCLC(tty)) c=tolower(c); if (c == __DISABLED_CHAR) tty->lnext = 1; if (L_CANON(tty) && !tty->lnext) { if (c == KILL_CHAR(tty) || c == WERASE_CHAR(tty)) { int seen_alnums = (c == WERASE_CHAR(tty)) ? 0 : -1; /* deal with killing the input line */ while(!(EMPTY(&tty->secondary) || (c=LAST(&tty->secondary))==10 || ((EOF_CHAR(tty) != __DISABLED_CHAR) && (c==EOF_CHAR(tty))))) { /* if killing just a word, kill all non-alnum chars, then all alnum chars. */ if (seen_alnums >= 0) { if (isalnum(c)) seen_alnums++; else if (seen_alnums) break; } if (L_ECHO(tty)) { if (c<32) { put_tty_queue('\b', &tty->write_q); put_tty_queue(' ', &tty->write_q); put_tty_queue('\b',&tty->write_q); } put_tty_queue('\b',&tty->write_q); put_tty_queue(' ',&tty->write_q); put_tty_queue('\b',&tty->write_q); } DEC(tty->secondary.head); } continue; } if (c == ERASE_CHAR(tty)) { if (EMPTY(&tty->secondary) || (c=LAST(&tty->secondary))==10 || ((EOF_CHAR(tty) != __DISABLED_CHAR) && (c==EOF_CHAR(tty)))) continue; if (L_ECHO(tty)) { if (c<32) { put_tty_queue('\b',&tty->write_q); put_tty_queue(' ',&tty->write_q); put_tty_queue('\b',&tty->write_q); } put_tty_queue('\b',&tty->write_q); put_tty_queue(' ',&tty->write_q); put_tty_queue('\b',&tty->write_q); } DEC(tty->secondary.head); continue; } if (c == LNEXT_CHAR(tty)) { tty->lnext = 1; if (L_ECHO(tty)) { put_tty_queue('^',&tty->write_q); put_tty_queue('\b',&tty->write_q); } continue; } } if (I_IXON(tty) && !tty->lnext) { if (c == STOP_CHAR(tty)) { tty->status_changed = 1; tty->ctrl_status |= TIOCPKT_STOP; tty->stopped=1; if (IS_A_CONSOLE(tty->line)) { set_vc_kbd_flag(kbd_table + fg_console, VC_SCROLLOCK); set_leds(); } continue; } if (((I_IXANY(tty)) && tty->stopped) || (c == START_CHAR(tty))) { tty->status_changed = 1; tty->ctrl_status |= TIOCPKT_START; tty->stopped=0; if (IS_A_CONSOLE(tty->line)) { clr_vc_kbd_flag(kbd_table + fg_console, VC_SCROLLOCK); set_leds(); } continue; } } if (L_ISIG(tty) && !tty->lnext) { if (c == INTR_CHAR(tty)) { kill_pg(tty->pgrp, SIGINT, 1); flush_input(tty); continue; } if (c == QUIT_CHAR(tty)) { kill_pg(tty->pgrp, SIGQUIT, 1); flush_input(tty); continue; } if (c == SUSPEND_CHAR(tty)) { if (!is_orphaned_pgrp(tty->pgrp)) { kill_pg(tty->pgrp, SIGTSTP, 1); flush_input(tty); } continue; } } if (c==10 || (EOF_CHAR(tty) != __DISABLED_CHAR && c==EOF_CHAR(tty))) tty->secondary.data++; if ((c==10) && (L_ECHO(tty) || (L_CANON(tty) && L_ECHONL(tty)))) { put_tty_queue('\n',&tty->write_q); put_tty_queue('\r',&tty->write_q); } else if (L_ECHO(tty)) { if (c<32 && L_ECHOCTL(tty)) { put_tty_queue('^',&tty->write_q); put_tty_queue(c+'A'-1, &tty->write_q); if (EOF_CHAR(tty) != __DISABLED_CHAR && c==EOF_CHAR(tty) && !tty->lnext) { put_tty_queue('\b',&tty->write_q); put_tty_queue('\b',&tty->write_q); } } else put_tty_queue(c, &tty->write_q); } tty->lnext = 0; put_tty_queue(c, &tty->secondary); } TTY_WRITE_FLUSH(tty); if (!EMPTY(&tty->secondary)) wake_up_interruptible(&tty->secondary.proc_list); if (tty->write_q.proc_list && LEFT(&tty->write_q) > TTY_BUF_SIZE/2) wake_up_interruptible(&tty->write_q.proc_list); if (tty->throttle && (LEFT(&tty->read_q) >= RQ_THRESHOLD_HW) && clear_bit(TTY_RQ_THROTTLED, &tty->flags)) tty->throttle(tty, TTY_THROTTLE_RQ_AVAIL); if (tty->throttle && (LEFT(&tty->secondary) >= SQ_THRESHOLD_HW) && clear_bit(TTY_SQ_THROTTLED, &tty->flags)) tty->throttle(tty, TTY_THROTTLE_SQ_AVAIL); } int is_ignored(int sig) { return ((current->blocked & (1<<(sig-1))) || (current->sigaction[sig-1].sa_handler == SIG_IGN)); } static int available_canon_input(struct tty_struct *); static void __wait_for_canon_input(struct file * file, struct tty_struct *); static void wait_for_canon_input(struct file * file, struct tty_struct * tty) { if (!available_canon_input(tty)) { if (current->signal & ~current->blocked) return; __wait_for_canon_input(file, tty); } } static int read_chan(struct tty_struct * tty, struct file * file, char * buf, int nr) { struct wait_queue wait = { current, NULL }; int c; char * b=buf; int minimum,time; if (L_CANON(tty)) minimum = time = current->timeout = 0; else { time = 10L*tty->termios->c_cc[VTIME]; minimum = tty->termios->c_cc[VMIN]; if (minimum) current->timeout = 0xffffffff; else { if (time) current->timeout = time + jiffies; else current->timeout = 0; time = 0; minimum = 1; } } if (file->f_flags & O_NONBLOCK) { time = current->timeout = 0; if (L_CANON(tty) && !available_canon_input(tty)) return -EAGAIN; } else if (L_CANON(tty)) { wait_for_canon_input(file, tty); if (current->signal & ~current->blocked) return -ERESTARTSYS; } if (minimum>nr) minimum = nr; /* deal with packet mode: First test for status change */ if (tty->packet && tty->link && tty->link->status_changed) { put_fs_byte (tty->link->ctrl_status, b); tty->link->status_changed = 0; return 1; } /* now bump the buffer up one. */ if (tty->packet) { put_fs_byte (0,b++); nr--; /* this really shouldn't happen, but we need to put it here. */ if (nr == 0) return 1; } add_wait_queue(&tty->secondary.proc_list, &wait); while (nr>0) { if (tty_hung_up_p(file)) { file->f_flags &= ~O_NONBLOCK; break; /* force read() to return 0 */ } TTY_READ_FLUSH(tty); if (tty->link) TTY_WRITE_FLUSH(tty->link); while (nr > 0 && ((c = get_tty_queue(&tty->secondary)) >= 0)) { if ((EOF_CHAR(tty) != __DISABLED_CHAR && c==EOF_CHAR(tty)) || c==10) tty->secondary.data--; if ((EOF_CHAR(tty) != __DISABLED_CHAR && c==EOF_CHAR(tty)) && L_CANON(tty)) break; put_fs_byte(c,b++); nr--; if (time) current->timeout = time+jiffies; if (c==10 && L_CANON(tty)) break; }; wake_up_interruptible(&tty->read_q.proc_list); /* * If there is enough space in the secondary queue * now, let the low-level driver know. */ if (tty->throttle && (LEFT(&tty->secondary) >= SQ_THRESHOLD_HW) && clear_bit(TTY_SQ_THROTTLED, &tty->flags)) tty->throttle(tty, TTY_THROTTLE_SQ_AVAIL); if (b-buf >= minimum || !current->timeout) break; if (current->signal & ~current->blocked) break; if (tty->link) { if (IS_A_PTY_MASTER(tty->line)) { if ((tty->flags & (1 << TTY_SLAVE_OPENED)) && tty->link->count <= 1) break; } else { if (!tty->link->count) break; } } TTY_READ_FLUSH(tty); if (tty->link) TTY_WRITE_FLUSH(tty->link); if (!EMPTY(&tty->secondary)) continue; current->state = TASK_INTERRUPTIBLE; if (EMPTY(&tty->secondary)) schedule(); current->state = TASK_RUNNING; } remove_wait_queue(&tty->secondary.proc_list, &wait); TTY_READ_FLUSH(tty); if (tty->link && tty->link->write) TTY_WRITE_FLUSH(tty->link); current->timeout = 0; /* packet mode sticks in an extra 0. If that's all we've got, we should count it a zero bytes. */ if (tty->packet) { if ((b-buf) > 1) return b-buf; } else { if (b-buf) return b-buf; } if (current->signal & ~current->blocked) return -ERESTARTSYS; if (file->f_flags & O_NONBLOCK) return -EAGAIN; if (IS_A_PTY_MASTER(tty->line)) return -EIO; return 0; } static void __wait_for_canon_input(struct file * file, struct tty_struct * tty) { struct wait_queue wait = { current, NULL }; add_wait_queue(&tty->secondary.proc_list, &wait); while (1) { current->state = TASK_INTERRUPTIBLE; if (available_canon_input(tty)) break; if (current->signal & ~current->blocked) break; if (tty_hung_up_p(file)) break; schedule(); } current->state = TASK_RUNNING; remove_wait_queue(&tty->secondary.proc_list, &wait); } static int available_canon_input(struct tty_struct * tty) { TTY_READ_FLUSH(tty); if (tty->link) if (tty->link->count) TTY_WRITE_FLUSH(tty->link); else return 1; if (FULL(&tty->read_q)) return 1; if (tty->secondary.data) return 1; return 0; } static int write_chan(struct tty_struct * tty, struct file * file, char * buf, int nr) { struct wait_queue wait = { current, NULL }; char c, *b=buf; if (nr < 0) return -EINVAL; if (!nr) return 0; add_wait_queue(&tty->write_q.proc_list, &wait); while (nr>0) { if (current->signal & ~current->blocked) break; if (tty_hung_up_p(file)) break; if (tty->link && !tty->link->count) { send_sig(SIGPIPE,current,0); break; } current->state = TASK_INTERRUPTIBLE; if (FULL(&tty->write_q)) { TTY_WRITE_FLUSH(tty); if (FULL(&tty->write_q)) schedule(); current->state = TASK_RUNNING; continue; } current->state = TASK_RUNNING; while (nr>0 && !FULL(&tty->write_q)) { c=get_fs_byte(b); if (O_POST(tty)) { switch (c) { case '\n': if (O_NLRET(tty)) { tty->column = 0; } if (O_NLCR(tty)) { if (!set_bit(TTY_CR_PENDING,&tty->flags)) { c = '\r'; tty->column = 0; b--; nr++; } else { clear_bit(TTY_CR_PENDING,&tty->flags); } } break; case '\r': if (O_NOCR(tty) && tty->column == 0) { b++; nr--; continue; } if (O_CRNL(tty)) { c = '\n'; if (O_NLRET(tty)) tty->column = 0; break; } tty->column = 0; break; case '\t': if (O_TABDLY(tty) == XTABS) { c = ' '; tty->column++; if (tty->column % 8 != 0) { b--; nr++; } } break; case '\b': tty->column--; break; default: if (O_LCUC(tty)) c = toupper(c); tty->column++; break; } } b++; nr--; put_tty_queue(c,&tty->write_q); } if (need_resched) schedule(); } remove_wait_queue(&tty->write_q.proc_list, &wait); TTY_WRITE_FLUSH(tty); if (b-buf) return b-buf; if (tty->link && !tty->link->count) return -EPIPE; if (current->signal & ~current->blocked) return -ERESTARTSYS; return 0; } static int tty_read(struct inode * inode, struct file * file, char * buf, int count) { int i, dev; struct tty_struct * tty; dev = file->f_rdev; if (MAJOR(dev) != 4) { printk("tty_read: bad pseudo-major nr #%d\n", MAJOR(dev)); return -EINVAL; } dev = MINOR(dev); tty = TTY_TABLE(dev); if (!tty || (tty->flags & (1 << TTY_IO_ERROR))) return -EIO; if ((inode->i_rdev != 0x0400) && /* don't stop on /dev/console */ (tty->pgrp > 0) && (current->tty == dev) && (tty->pgrp != current->pgrp)) if (is_ignored(SIGTTIN) || is_orphaned_pgrp(current->pgrp)) return -EIO; else { (void) kill_pg(current->pgrp, SIGTTIN, 1); return -ERESTARTSYS; } if (ldiscs[tty->disc].read) i = (ldiscs[tty->disc].read)(tty,file,buf,count); else i = -EIO; if (i > 0) inode->i_atime = CURRENT_TIME; return i; } static int tty_write(struct inode * inode, struct file * file, char * buf, int count) { int dev, i, is_console; struct tty_struct * tty; dev = file->f_rdev; is_console = (inode->i_rdev == 0x0400); if (MAJOR(dev) != 4) { printk("tty_write: pseudo-major != 4\n"); return -EINVAL; } dev = MINOR(dev); if (is_console && redirect) tty = redirect; else tty = TTY_TABLE(dev); if (!tty || !tty->write || (tty->flags & (1 << TTY_IO_ERROR))) return -EIO; if (!is_console && L_TOSTOP(tty) && (tty->pgrp > 0) && (current->tty == dev) && (tty->pgrp != current->pgrp)) { if (is_orphaned_pgrp(current->pgrp)) return -EIO; if (!is_ignored(SIGTTOU)) { (void) kill_pg(current->pgrp, SIGTTOU, 1); return -ERESTARTSYS; } } if (ldiscs[tty->disc].write) i = (ldiscs[tty->disc].write)(tty,file,buf,count); else i = -EIO; if (i > 0) inode->i_mtime = CURRENT_TIME; return i; } /* * This is so ripe with races that you should *really* not touch this * unless you know exactly what you are doing. All the changes have to be * made atomically, or there may be incorrect pointers all over the place. */ static int init_dev(int dev) { struct tty_struct *tty, *o_tty; struct termios *tp, *o_tp; int retval; int o_dev; o_dev = PTY_OTHER(dev); tty = o_tty = NULL; tp = o_tp = NULL; repeat: retval = -EAGAIN; if (IS_A_PTY_MASTER(dev) && tty_table[dev] && tty_table[dev]->count) goto end_init; retval = -ENOMEM; if (!tty_table[dev] && !tty) { tty = (struct tty_struct *) get_free_page(GFP_KERNEL); if (!tty) goto end_init; initialize_tty_struct(dev, tty); goto repeat; } if (!tty_termios[dev] && !tp) { tp = (struct termios *) kmalloc(sizeof(struct termios), GFP_KERNEL); if (!tp) goto end_init; initialize_termios(dev, tp); goto repeat; } if (IS_A_PTY(dev)) { if (!tty_table[o_dev] && !o_tty) { o_tty = (struct tty_struct *) get_free_page(GFP_KERNEL); if (!o_tty) goto end_init; initialize_tty_struct(o_dev, o_tty); goto repeat; } if (!tty_termios[o_dev] && !o_tp) { o_tp = (struct termios *) kmalloc(sizeof(struct termios), GFP_KERNEL); if (!o_tp) goto end_init; initialize_termios(o_dev, o_tp); goto repeat; } } /* Now we have allocated all the structures: update all the pointers.. */ if (!tty_termios[dev]) { tty_termios[dev] = tp; tp = NULL; } if (!tty_table[dev]) { tty->termios = tty_termios[dev]; tty_table[dev] = tty; tty = NULL; } if (IS_A_PTY(dev)) { if (!tty_termios[o_dev]) { tty_termios[o_dev] = o_tp; o_tp = NULL; } if (!tty_table[o_dev]) { o_tty->termios = tty_termios[o_dev]; tty_table[o_dev] = o_tty; o_tty = NULL; } tty_table[dev]->link = tty_table[o_dev]; tty_table[o_dev]->link = tty_table[dev]; } tty_table[dev]->count++; if (IS_A_PTY_MASTER(dev)) tty_table[o_dev]->count++; retval = 0; end_init: if (tty) free_page((unsigned long) tty); if (o_tty) free_page((unsigned long) o_tty); if (tp) kfree_s(tp, sizeof(struct termios)); if (o_tp) kfree_s(o_tp, sizeof(struct termios)); return retval; } /* * Even releasing the tty structures is a tricky business.. We have * to be very careful that the structures are all released at the * same time, as interrupts might otherwise get the wrong pointers. */ static void release_dev(int dev, struct file * filp) { struct tty_struct *tty, *o_tty; struct termios *tp, *o_tp; struct task_struct **p; tty = tty_table[dev]; tp = tty_termios[dev]; o_tty = NULL; o_tp = NULL; if (!tty) { printk("release_dev: tty_table[%d] was NULL\n", dev); return; } if (!tp) { printk("release_dev: tty_termios[%d] was NULL\n", dev); return; } if (IS_A_PTY(dev)) { o_tty = tty_table[PTY_OTHER(dev)]; o_tp = tty_termios[PTY_OTHER(dev)]; if (!o_tty) { printk("release_dev: pty pair(%d) was NULL\n", dev); return; } if (!o_tp) { printk("release_dev: pty pair(%d) termios was NULL\n", dev); return; } if (tty->link != o_tty || o_tty->link != tty) { printk("release_dev: bad pty pointers\n"); return; } } tty->write_data_cnt = 0; /* Clear out pending trash */ if (tty->close) tty->close(tty, filp); if (IS_A_PTY_MASTER(dev)) { if (--tty->link->count < 0) { printk("release_dev: bad tty slave count (dev = %d): %d\n", dev, tty->count); tty->link->count = 0; } } if (--tty->count < 0) { printk("release_dev: bad tty_table[%d]->count: %d\n", dev, tty->count); tty->count = 0; } if (tty->count) return; /* * Make sure there aren't any processes that still think this * tty is their controlling tty. */ for (p = &LAST_TASK ; p > &FIRST_TASK ; --p) { if ((*p) && (*p)->tty == tty->line) (*p)->tty = -1; } if (ldiscs[tty->disc].close != NULL) ldiscs[tty->disc].close(tty); if (o_tty) { if (o_tty->count) return; else { tty_table[PTY_OTHER(dev)] = NULL; tty_termios[PTY_OTHER(dev)] = NULL; } } tty_table[dev] = NULL; if (IS_A_PTY(dev)) { tty_termios[dev] = NULL; kfree_s(tp, sizeof(struct termios)); } if (tty == redirect || o_tty == redirect) redirect = NULL; free_page((unsigned long) tty); if (o_tty) free_page((unsigned long) o_tty); if (o_tp) kfree_s(o_tp, sizeof(struct termios)); } /* * tty_open and tty_release keep up the tty count that contains the * number of opens done on a tty. We cannot use the inode-count, as * different inodes might point to the same tty. * * Open-counting is needed for pty masters, as well as for keeping * track of serial lines: DTR is dropped when the last close happens. * (This is not done solely through tty->count, now. - Ted 1/27/92) * * The termios state of a pty is reset on first open so that * settings don't persist across reuse. */ static int tty_open(struct inode * inode, struct file * filp) { struct tty_struct *tty; int major, minor; int noctty, retval; minor = MINOR(inode->i_rdev); major = MAJOR(inode->i_rdev); noctty = filp->f_flags & O_NOCTTY; if (major == 5) { if (!minor) { major = 4; minor = current->tty; } noctty = 1; } else if (major == 4) { if (!minor) { minor = fg_console + 1; noctty = 1; } } else { printk("Bad major #%d in tty_open\n", MAJOR(inode->i_rdev)); return -ENODEV; } if (minor <= 0) return -ENXIO; if (IS_A_PTY_MASTER(minor)) noctty = 1; filp->f_rdev = (major << 8) | minor; retval = init_dev(minor); if (retval) return retval; tty = tty_table[minor]; /* clean up the packet stuff. */ /* * Why is this not done in init_dev? Right here, if another * process opens up a tty in packet mode, all the packet * variables get cleared. Come to think of it, is anything * using the packet mode at all??? - Ted, 1/27/93 */ tty->status_changed = 0; tty->ctrl_status = 0; tty->packet = 0; if (tty->open) { retval = tty->open(tty, filp); } else { retval = -ENODEV; } if (retval) { release_dev(minor, filp); return retval; } if (!noctty && current->leader && current->tty<0 && tty->session==0) { current->tty = minor; tty->session = current->session; tty->pgrp = current->pgrp; } filp->f_rdev = 0x0400 | minor; /* Set it to something normal */ return 0; } /* * Note that releasing a pty master also releases the child, so * we have to make the redirection checks after that and on both * sides of a pty. */ static void tty_release(struct inode * inode, struct file * filp) { int dev; dev = filp->f_rdev; if (MAJOR(dev) != 4) { printk("tty_release: tty pseudo-major != 4\n"); return; } dev = MINOR(filp->f_rdev); if (!dev) { printk("tty_release: bad f_rdev\n"); return; } release_dev(dev, filp); } static int tty_select(struct inode * inode, struct file * filp, int sel_type, select_table * wait) { int dev; struct tty_struct * tty; dev = filp->f_rdev; if (MAJOR(dev) != 4) { printk("tty_select: tty pseudo-major != 4\n"); return 0; } dev = MINOR(filp->f_rdev); tty = TTY_TABLE(dev); if (!tty) { printk("tty_select: tty struct for dev %d was NULL\n", dev); return 0; } switch (sel_type) { case SEL_IN: if (L_CANON(tty)) { if (available_canon_input(tty)) return 1; } else if (!EMPTY(&tty->secondary)) return 1; if (tty->link) { if (IS_A_PTY_MASTER(tty->line)) { if ((tty->flags & (1 << TTY_SLAVE_OPENED)) && tty->link->count <= 1) return 1; } else { if (!tty->link->count) return 1; } } /* see if the status byte can be read. */ if (tty->packet && tty->link && tty->link->status_changed) return 1; select_wait(&tty->secondary.proc_list, wait); return 0; case SEL_OUT: if (!FULL(&tty->write_q)) return 1; select_wait(&tty->write_q.proc_list, wait); return 0; case SEL_EX: if (tty->link) { if (IS_A_PTY_MASTER(tty->line)) { if ((tty->flags & (1 << TTY_SLAVE_OPENED)) && tty->link->count <= 1) return 1; } else { if (!tty->link->count) return 1; } } return 0; } return 0; } /* * This implements the "Secure Attention Key" --- the idea is to * prevent trojan horses by killing all processes associated with this * tty when the user hits the "Secure Attention Key". Required for * super-paranoid applications --- see the Orange Book for more details. * * This code could be nicer; ideally it should send a HUP, wait a few * seconds, then send a INT, and then a KILL signal. But you then * have to coordinate with the init process, since all processes associated * with the current tty must be dead before the new getty is allowed * to spawn. */ void do_SAK( struct tty_struct *tty) { struct task_struct **p; int line = tty->line; int session = tty->session; int i; struct file *filp; flush_input(tty); flush_output(tty); for (p = &LAST_TASK ; p > &FIRST_TASK ; --p) { if (!(*p)) continue; if (((*p)->tty == line) || ((session > 0) && ((*p)->session == session))) send_sig(SIGKILL, *p, 1); else { for (i=0; i < NR_FILE; i++) { filp = (*p)->filp[i]; if (filp && (filp->f_op == &tty_fops) && (MINOR(filp->f_rdev) == line)) { send_sig(SIGKILL, *p, 1); break; } } } } } /* * This routine allows a kernel routine to send a large chunk of data * to a particular tty; if all of the data can be queued up for ouput * immediately, tty_write_data() will return 0. If, however, not all * of the data can be immediately queued for delivery, the number of * bytes left to be queued up will be returned, and the rest of the * data will be queued up when there is room. The callback function * will be called (with the argument callarg) when the last of the * data is finally in the queue. * * Note that the callback routine will _not_ be called if all of the * data could be queued immediately. This is to avoid a problem with * the kernel stack getting too deep, which might happen if the * callback routine calls tty_write_data with itself as an argument. */ int tty_write_data(struct tty_struct *tty, char *bufp, int buflen, void (*callback)(void * data), void * callarg) { int head, tail, count; unsigned long flags; char *p; #define VLEFT ((tail-head-1)&(TTY_BUF_SIZE-1)) save_flags(flags); cli(); if (tty->write_data_cnt) { restore_flags(flags); return -EBUSY; } head = tty->write_q.head; tail = tty->write_q.tail; count = buflen; p = bufp; while (count && VLEFT > 0) { tty->write_q.buf[head++] = *p++; head &= TTY_BUF_SIZE-1; count--; } tty->write_q.head = head; if (count) { tty->write_data_cnt = count; tty->write_data_ptr = (unsigned char *) p; tty->write_data_callback = callback; tty->write_data_arg = callarg; } restore_flags(flags); tty->write(tty); return count; } /* * This routine routine is called after an interrupt has drained a * tty's write queue, so that there is more space for data waiting to * be sent in tty->write_data_ptr. * * tty_check_write[8] is a bitstring which indicates which ttys * needs to be processed. */ void tty_bh_routine(void * unused) { int i, j, line, mask; int head, tail, count; unsigned char * p; struct tty_struct * tty; for (i = 0, line = 0; i < MAX_TTYS / 32; i++) { if (!tty_check_write[i]) { line += 32; continue; } for (j=0, mask=0; j < 32; j++, line++, mask <<= 1) { if (clear_bit(j, &tty_check_write[i])) { tty = tty_table[line]; if (!tty || !tty->write_data_cnt) continue; cli(); head = tty->write_q.head; tail = tty->write_q.tail; count = tty->write_data_cnt; p = tty->write_data_ptr; while (count && VLEFT > 0) { tty->write_q.buf[head++] = *p++; head &= TTY_BUF_SIZE-1; count--; } tty->write_q.head = head; tty->write_data_ptr = p; tty->write_data_cnt = count; sti(); if (!count) (tty->write_data_callback) (tty->write_data_arg); } } } } /* * This subroutine initializes a tty structure. We have to set up * things correctly for each different type of tty. */ static void initialize_tty_struct(int line, struct tty_struct *tty) { memset(tty, 0, sizeof(struct tty_struct)); tty->line = line; tty->disc = N_TTY; tty->pgrp = -1; tty->winsize.ws_row = 0; tty->winsize.ws_col = 0; if (IS_A_CONSOLE(line)) { tty->open = con_open; tty->winsize.ws_row = video_num_lines; tty->winsize.ws_col = video_num_columns; } else if IS_A_SERIAL(line) { tty->open = rs_open; } else if IS_A_PTY(line) { tty->open = pty_open; } } static void initialize_termios(int line, struct termios * tp) { memset(tp, 0, sizeof(struct termios)); memcpy(tp->c_cc, INIT_C_CC, NCCS); if (IS_A_CONSOLE(line)) { tp->c_iflag = ICRNL | IXON; tp->c_oflag = OPOST | ONLCR; tp->c_cflag = B38400 | CS8 | CREAD; tp->c_lflag = ISIG | ICANON | ECHO | ECHOCTL | ECHOKE; } else if (IS_A_SERIAL(line)) { tp->c_cflag = B2400 | CS8 | CREAD | HUPCL | CLOCAL; tp->c_oflag = OPOST | ONLCR | XTABS; } else if (IS_A_PTY_MASTER(line)) { tp->c_cflag = B9600 | CS8 | CREAD; } else if (IS_A_PTY_SLAVE(line)) { tp->c_iflag = ICRNL | IXON; tp->c_oflag = OPOST | ONLCR; tp->c_cflag = B38400 | CS8 | CREAD; tp->c_lflag = ISIG | ICANON | ECHO | ECHOCTL | ECHOKE; } } static struct tty_ldisc tty_ldisc_N_TTY = { 0, /* flags */ NULL, /* open */ NULL, /* close */ read_chan, /* read */ write_chan, /* write */ NULL, /* ioctl */ copy_to_cooked /* handler */ }; long tty_init(long kmem_start) { int i; if (sizeof(struct tty_struct) > 4096) panic("size of tty structure > 4096!"); if (register_chrdev(4,"tty",&tty_fops)) panic("unable to get major 4 for tty device"); if (register_chrdev(5,"tty",&tty_fops)) panic("unable to get major 5 for tty device"); for (i=0 ; i< MAX_TTYS ; i++) { tty_table[i] = 0; tty_termios[i] = 0; } memset(tty_check_write, 0, sizeof(tty_check_write)); bh_base[TTY_BH].routine = tty_bh_routine; /* Setup the default TTY line discipline. */ memset(ldiscs, 0, sizeof(ldiscs)); (void) tty_register_ldisc(N_TTY, &tty_ldisc_N_TTY); kmem_start = kbd_init(kmem_start); kmem_start = con_init(kmem_start); kmem_start = rs_init(kmem_start); return kmem_start; }