
Free Software Development

Andrew Tridgell
Samba Team



The development model

● Most free software projects are meritocricies, where 
 (at least in theory) the best idea wins

● you must use technical arguments to make progress
● you must understand the code and the problem deeply
● the environment can be very harsh!

● There is a huge emphasis on testing, particularly 
automated testing

● Often it is the best programmers who do the testing and 
write the test suites

● Submitting untested code is a major mistake



... the development model

● There is also an emphasis on code quality
● Saying “the code works” is not good enough. It must be 

“good” code, which means elegance, simplicity and above 
all ease of maintainence

● Refactoring code to do the same thing but in a better way is 
encouraged, but the new code must be well tested. This 
means automated test suites are essential.

● Long term, but fast, development
● Development is often very fast, but developers are usually 

involved for many years
● You must be prepared to put a lot of time in



How to be a systems programmer

● A “systems programmer” is someone who creates 
basic services, or interacts closely with the 
operating system. Samba developers are systems 
programmers.

● If you want to learn to be a systems programmer 
then you should follow these steps

● learn the tools
● build clones of common systems tools
● read books on operating systems internals
● learn C and at least one scripting language



... learn the tools

● There are a number of essential tools to systems 
programming

● strace - to trace system calls
● ltrace - to trace library calls
● gdb - to debug and diagnose programs
● valgrind - to find memory errors

● You should learn to run these tools as an expert and 
know what the output means

● test them on common programs, plus on your own code



... read books on operating systems

● To be a good systems programmer you must 
understand the basics of operating systems

● read a book on operating system design
● even though much of the book might be wrong!

● read the Linux kernel documentation, particular the 
description of the VM and filesystem interfaces

● write simple programs to test your knowledge, and use 
tools like strace to watch the behaviour

● read the POSIX or SUS documentation for important calls 
like open() and mmap()

● you must understand the principles of locking and race 
conditions



... learn programming languages

● To be a systems programmer you must understand 
the C programming language in detail

● You should also learn at least one scripting 
language such as Perl or Python, and perhaps 
bourne shell scripting

● Learn what makes “good” and “bad” style in these 
languages

● Learn how to avoid common programming errors, 
such a buffer overruns



How to join a project

● Joining a new project can be difficult!
● pick a project that you like! You might be working on it for 

many years
● read and experiment with the latest development code
● read the mailing list, join the IRC channel
● when you start to contribute, make sure your postings are 

accurate
● read the answers you get carefully
● expect harsh comments and initial rejection
● consider starting as a “janitor”, working on trivial bugfixes 

and refactoring



Why don't more chinese contribute to 
free software?

● Is there a problem? What is it?
● maybe mailing lists are too harsh and rude?
● maybe because of language difficulties?
● maybe fear of criticism?
● something else?

● What can be done to help?



Random musings

● The mindcraft story
● how the community responds to challenges

● The power of procrastination!
● many free software projects get started as work avoidance
● procrastination can lead to a new career!

● The barrier to entry curve
● As a project ages, the quality requirements get much higher



Questions?

● You can download these slides at:
● http://samba.org/ftp/tridge/talks/development.pdf

This work represents the views of the author, and does not necessarily represent the views of IBM


