Interview with M.D. McIlroy

MSM:	 I was looking over some of the literature and one of the things that struck me as I was looking back at Ritchie’s retrospective and other retrospectives of it, are the circumstances under which it got started. I gather that the name UNIX came from Brian and it came in ‘70 and it was a play on MULTICS. And the more I read the literature the more MULTICS looms behind UNIX, both positively and negatively. What was the relationship there?�

McIlroy: Ritchie, Thompson and Osanna, and Peter Neumann, and I were all in on the MULTICS project from the time Bell Labs joined. Ed David, who was Executive Director of (ocean? --not clear) sciences, I guess it’s called. And Later on went to be Nixon’s science advisor.

MSM:	 Go ahead.

McIlroy: Was really pushing for this MULTICS project but (it was) the dream of the computer utility that just grabbed him. And he alerted people to join in and meet with MIT and start laying plans and early people doing that where including Masowski. Osanna and Neumann were particularly turned in on the project and devoted time to it. I would say the rest of us were in on the project and dove in with a will and did a lot of design work.

But, perhaps were not quite as confirm believers that this was the wave of the future. Nevertheless, we devoted an awful lot of time to it. When MULTICS began to work, the very first place it worked was here. We had our GE 645 machine. MIT, had one too. But, they were doing their development on another machine, carrying tapes across and just taking measurements, making tests on the MULTICS machine. As soon as we got a tape, we tried to run it as a computing home. Thompson, so in the day, we would have a MULTICS machine running. Fitfully. It was amazing how three people could absolutely overload this giant room full of equipment. And that was because MULTICS actually changed the way people worked. The MULTICS user was not the same as a user of previous time sharing systems.

And the principle reason was that he could do multiple things at a time and that he could be typing ahead of where he was working. Previous ones had been strictly half duplex. You typed for awhile and then you waited for the computer to respond. MULTICS went full duplex. It was amazing how this one tiny little change, absolutely permeated the way you use the system. And that and the fact that you could very easily set things going in the background. So, any one user could start several things going, and when the machine was slow, that’s exactly what you would do. Your mind would be racing way ahead of the machine. And that just brought it down even worse.

So, MULTICS was clearly… once it was running was not the boon, that was going immediately solve our need for computing cycles. Three people could bring it down. Also there developed a wonderful Multics system programmers manual. An eight foot shelf or something. I don’t recall how long it was. Nobody here had a complete copy. Volume after volume of design documents. Very daunting. Thompson and Ritchie and Rudd Canday, who was an intern in my department for a year, were talking about, well, how could we do this in a less massive way? And, there were many afternoons spent across the hall there. Working at the blackboard. Working out the design of the MULTICS file system. I’m sorry, the UNIX file, what became the UNIX file system. If we were to make a file system, what would it look like?

MSM:	 Let me interrupt you for a second? What is it. Was it the file system that made that MULTICS so big and daunting?

McIlroy: It was the… The real reason for the… one already knew why time sharing was such a boon. It wasn’t that it allowed many people to share the cycles in the machine. It was, that it allowed many people to work in the same huge pot of data and it was this synergy of sharing data, to be able to quickly look at other people’s files, pass messages around and so on, that was the best thing that time sharing had to offer. The other was merely a economic advantage, but the one of sharing was a qualitatively different way of using the machines. So, the file system was the heart of the matter. And

MSM:	 Oh, so it was the idea of sharing?

McIlroy: Yes.

MSM:	 And, making it easy to share?

McIlroy: Yes. And make it easy to find; to store away and retrieve information. The UNIX system owes much to the MULTICS file system, most notably the directory tree ID.

MSM:	 How many of these design features of MULTICS, had sprung from you people in the first place? Or did you …?

McIlroy: The basic concepts of MULTICS really come from MIT. We joined the project after they got started. And it was going to be the follow on to their CTSS and talked about it for a long time. One significant design thing for MULTICS came from Vyssotsky. MULTICS had these two ideas; the file system, and the segmented address space for processes. And they were separate. You would do IO from files into the address space. Vyssotsky said, “Why don’t …, why are not files exactly the same as segments? And there is no…; an IO disappears. Well in fact FORTRAN programs still have read and write. But, when you open a file, all you’re doing is putting a segment in your address space. MULTICS really worked that way.

And our later systems have backed off from that wonderful unifying idea. There was, in the working out of the idea, there was a great deal of overhead. The other big thing of MULTICS was the idea of dynamic linking. And what that imposed upon the rest of the architecture, was, I’m sorry, I should say dynamic linking and the so called ring structure for memory protection. The various layers of access permissions. All the collection of those things together, the hardware was conceived to support those, but it was our first cut. The collection of them together turned out to be take a great deal of implementation to make them work. One of the surprises late in the project was.... So you got automatic… (back up). The way the shell worked. When you invoked a program, what it did was simply link the program into your address space and run it right there. Suppose you recompile the program. It’s already in your address space and you run it again, and you run the old one.

And, how to undo. There is lots design effort that went into the binder. Then. Then nobody thought about unbinding, which turned out to be something that had to be put in later on. And unbinding turned out to be quite a big monster. Especially, to have unbinding occur in any… people really didn’t like this idea. So, I rewrote the program and I got the old one and you would like that to happen. You get the latest version automatically. It took a great deal of implementation. This kind of thing, mushroomed and the system got huge.

MSM:	 What did MIT look to get from Bell Labs in that project? … what was your role?

McIlroy: Why was Bell Labs part of it?

MSM:	 What were the expectations in both directions?

McIlroy: MIT had the basic vision of the computer utility, in those words. And Bell Labs certainly was a window into getting that out of the academic world. I suspect that would be the principle motivation for having Bell Labs in. Of course Bell Labs too, had a good reputation for having built interesting operating systems for many years. When, for example, IBM came out with a 709/7090, which had data channels. We. It was in the market for well over a year, before we got one. Probably a couple of years. But, we built our own operating system for it. Similar to the one we’d built for the 704. We used the data channels and it did asynchronous I/O. None of the software that came from IBM used the data channels any way…

Although the hardware was there, but it didn’t exploit the software. So, we were in there exploiting the hardware and the data channels interrupts all that. First, when the disk drives were announced as a product. Lots of people put them on. But, we were the first people to put them into a file system where you could leave your files. So, Bell Labs did have plenty of background in creation of operating systems.

MSM:	 Where you part of that?

McIlroy: Yes. I was not part of the 704 operating system, which was built before I came to work here. But, the 7090 operating system, was I certainly was. Although the two principal players were, Ron Drummond and Gwenn Hanson.

MSM:	 So, what you joined was a continuing tradition of building your own operating systems?

McIlroy: …of building our own operating systems, absolutely. And this was… everybody agreed that operating systems could do multiple things at a time, were the next step and MULTICS was let’s hope in that direction. It was multiple in every sense. As its name indicated.

MSM:	 And the Labs hoped to get a share on that?

McIlroy: Well, the Labs was looking for… to move to a new generation of equipment and a new way of using it, and here was a way. It looked like that might be a very big undertaking, because operating systems, although they had been built by two people here, back in 1968 uh ‘58. You found more and more people when you looked outside at the ones that were built around ‘64 and you find that there were fifty people building them. Maybe too much to be doing in the corner of the math department.

Of course, what UNIX showed after that ,was that two people could still build a operating system if they had the right model. So, we had MULTICS in the background. Ken Thompson, very quietly, in the wee hours, would take the machine when nobody was on. Would take the machine down, was building his own operating system, for the giant 645, starting from scratch. He got to the point, where actually he came up to the console and said log-in or something like that. I do not know, what the architecture of that operating system was.

MSM:	 He was just doing it to explore operating systems?

McIlroy: Yes. He felt he could do it with far less fuss and bother than the megabytes that had been written for MULTICS.

MSM:	 So, you really were disappointed as a group in the way MULTICS ended?

McIlroy: I think that’s true in most of us. Yeah.

MSM:	 And so it just petered out?�

McIlroy: No. We were still working. But, (pause) the computer centers had been put up the money for the machine. The computer centers by now were, separate from research… that happened some time during the MULTICS projects. The computer centers, hoping to get something out it, and with big budgets research had never had computers of their own. Computers always belonged to the Computing Center, which once belonged to research. The computer centers move away, research is left as clients. Only no hardware and no capital budget. Well, the computer center began to see that this was not going to provide the cycles that they were going to need in the next couple of years.

MSM:	 No. I see three people can bring it down. This is not the answer to their needs.

McIlroy: They needed computing cycles. They were selling them. They had this million dollars worth of equipment up in the attic, that was sitting there being played with by three folks and the day that it was going to make into the comp center. We did have some fairly interesting assessments of what it could do. I think, I still have those up on the shelf. Where various people predicted when MULTICS might become useful and how useful it would be. You’ll find positive and negative things written about it. I could get that kind of stuff out for you if you’re interested. It’s MULTICS, its not UNIX.

So, it became clear that we were a drag on the computer center’s budget. We were not going to pull them out of their hole. You know, in the near future. They were going to have start buying hardware and go with whatever was in the market at the time for operating systems. And the project was, it was a clean sharp decision made to get out. The project did not wind down, it just stopped.

MSM:	 When was that?

McIlroy: It was in 1969. I forget what month, and the astonishing thing is that we had a visit from the President, Bill Baker himself. To tell us about the turning off of the project. And he poured wonderful vacarian oil upon the waters.

MSM:	 I’ve seen him in charming action (Laughing)

McIlroy: As we still often proposed, in Vietnam, he declared a victory and retreated. (Laughing) The research value of MULTICS was declared to have been... the research potential of the MULTICS project was declared to have been exhausted. So, we would get out of it as a research project.

MSM:	 I gather it was about the same time the research group got split into two halves, mathematicians and computer research?

McIlroy: That had happened about ‘67 or so.

MSM:	 Had that split come simply because things were getting too big?

McIlroy: Yeah. I think so. There were two degrees of split. First split was, computer research left math and kept the comp center. And fairly shortly thereafter, the comp center left research entirely and went over to a more operational department.

MSM:	 You were computing research, but you didn’t have any computers?

McIlroy: That’s correct. Visual and acoustics research had computers and they had them for some time. They were really, they wanted to listen to signals in real time and make digital filters. Simulate digital filters and stuff like this, and they could eat up all cycles of a machine. So, they started getting little, they were the pioneers of minicomputers at Bell Labs. They had some that were stuck on the side of our 7090. The Packard Bell 250 was the first one they had. This guy could reach in and grab cycles off the 90, or run a collection of interesting acoustic gear on the side.

Gather digitized tapes which would then be moved immediately to the 90 and processed. Perhaps, that was the first workstation, I think the Rand Corporation had some more or less at the same time frame, the early sixties. As more minicomputers became available, visual and acoustics research kept getting them. Now, we would look at their… there was interesting observation back and forth. They had nice hardware, and we would look how inefficiently they were using their cycles. You know, do a little improvement in your software and you wouldn’t have to have all these machines. They broke the ice for minicomputers. And, because they really didn’t like making software, instead when things got tough, they would just buy another machine. And if things got a little faster, the machines got a little faster, they would just throw out the old one and that was the origin of the PDP7, which …

MSM:	 Where is this famous PDP7? Does it still exist?

McIlroy: Long gone. That was a graphics engine, put together by Bill Nidke and Ed McDonald, Ed Setarp and some others. It was a graphics engine with a really very nice display on it. A display with a program display list, so that you could have graphics subroutines… and it was more, it had been displaced by an improved graphics engine, which was sitting idle and that’s what Thompson grabbed on and built, finally built… fairly soon after the UNIX shut off, and I think he was happier doing that than he was, trying to make the GE645 do its thing.

MSM:	 Now, you people must have been in something of a bind? When you were a computer research group. You haven’t got computers. Were you looking around for a mission? Did you have a mission?

McIlroy: Oh. We had, we still could work on the... We had always been associated with the comp center. We still had good times with the comp center. If we produced interesting compilers the comp center would install them. So, we had the computing cycles down there in principle. But, they were not at your fingertips, the way we got used to after having CTSS at MIT available to us for some years. From ‘66 on, we were connected to CTSS from here. This little machine came up and Thompson brought up his operating system, and Ritchie joined in, and I saw that it was a neat thing and I was the department head, so I muscled in, and they turned it from a one user to a two user system.

MSM:	 What were you doing at the time when this caught your interest?

McIlroy: Well, I had been the languages person for MULTICS. Bob Morris and I wrote the PL/1 compiler, and MULTICS was all written in PL/1. That came about, because I was on the IBM share PL/1 committee. So, I had. We were looking for higher level language to program MULTICS in. This was not a first. Boroughs had programmed the B5000 in some dialect Algol. But, that pretty well. That wasn’t good enough for. It really wasn’t too well suited to nit picking algorithms that go into a operating system. The PL/1 had everything you needed, and a lot more.

MSM:	 Did you like PL/1?

McIlroy: The answer is, not very much. Even I helped design it. It was a neat idea to put everything that was known about programming languages into one pot. (Laughing) Almost everything. But, they didn’t melt together very well. And I have only written one PL/1 program, in my life, after having designed it and built a compiler for it. Which says something about the language. The compiler was built in TMG compiler writing system, that I had taken over from Bob McClure of Texas Instruments, and then improved a good bit. The two of us built a very large portion of PL/1. We left out all the I/O, which turns out to be half, if you look at the grammar of PL/1, half of the grammar is about I/O, so that really cut off a lot. We left out the I/O. We left out parallel processing, and we left out almost nothing else, including some very elaborate data structure handling. Self describing structures and so on, which IBM didn’t have in their first release. Uh, compiler. The compiler, the two of us built in about a year and it was used for several years before finally being replace with a real one. This compiler had two diagnostics. The syntax error and the other was redeclaration.

(Laughing)

MSM:	 Sounds like BASIC.

(Laughing)

McIlroy: But, to build the compiler, we had this TMG compiler writing system and that one being a huge language, stretched into its limit and we kept, every once in awhile we’d fill up all of the memory and now there were two choices. You would work on the compiler. Or, you would work on the compiler compiler. And we had both at our disposal. Went back and forth, squeezing out one or the other and out of this, I got an idea of how TMG really ought to work and that’s what I did on the PDP-7. The first thing I brought up was from absolute scratch. We had an assembler only. I brought up a compiler writer, a compiler compiler. Written in its own language. Bootstrapped it up.

MSM:	 Now, is that TMG or did you do that in B?

McIlroy: It was TMG. TMG was a gun in itself. There was no B. There was no C. There was an assembler.

MSM:	 One of the sources talks about roff having come from run off.

McIlroy: Yes.

MSM:	 Which you did for MULTICS?

McIlroy: No, roff was done by Jerry Salzer and MULTICS, he invented it. I’m sorry for CTSS.

MSM:	 And you got up roff here?

McIlroy: I wrote roff for MULTICS, yes that’s true. That’s correct. And I wrote that in BPCL.

MSM:	 You got BPCL?

McIlroy: Dennis Ritchie had brought BPCL up on our machines.

MSM:	 He brought that in?

McIlroy: Mm. Hm. (yes)

MSM:	 Was B ever used in MULTICS?

McIlroy: No.

MSM:	 So, that history of BCPL, to B to C, is it all here?

McIlroy: All here.

McIlroy: And TMG fed into that too. Some of things like the two address assignment operators were in TMG here first and then were adopted by B, and by C. I can’t say I invented them because they were also on Algol68 at the same time. B is where the unusual declaration syntax of C came from. That was Ken’s invention, that the declaration should look like… should have the same syntax as an expression.

MSM:	 Since we’re on C. One of the… I’ll ask Dennis this when I get to it, but one of the features is, that struck me about C was when I was writing a LISP interpreter form, in it. This property of C, of always… of any statement bringing back a value, in the type, so that all operators have values and so I found that at a certain point my core C list was beginning to look like LISP expressions and at a certain point it just seemed automatic to go over to a LISP library. Because, I was just stacking parenthesis in C. Where did that come from? Is that part of B? Or… the notion that all operators have values?

McIlroy: Yeah. It was also in Algol68. In BCPL, which came out of CPL, they had the very, very strong distinction between notions and commands. An assignment was a command. So, they did not have… I do not think the assignment was an operator in the expression. But, it was a Algol68. So, that was in… So that happened sort of everywhere at the same time. In fact, the first place I saw it was McClure’s proposal called Linear C, which was way before the language C. Just liked it because it sounded nice. Like after Linear A and Linear B.

MSM:	 Oh I see, I see

McIlroy: It was an obscure looking language and it was linear, because you wrote tremendous long expressions.

MSM:	 Must have placed you on the borderline between a procedural and functional list?

McIlroy: Yes. It did. In roughly speaking what it had was a break in the continue statement. Continue simply went back to the last parenthesis, and Break simply jumped over to the next one, and those were the major contributors, plus an IF of course, those were the major controls in a language. So, there wasn’t an actual key word FOR. Just the fact that you said Continue, meant you would jump back.

MSM:	 Let’s jump ahead for a second.

McIlroy: Yeah.

(some chat about whether the machine is recording, red light, etc.)

MSM:	 I was talking to my daughter, who’s a computer science/music major at Harvard, before I came up here. She said, “What’s the name of this project?” Well, it’s the oral history of UNIX. She said, “That’s not particularly jazzy.” (Laughing) “Can’t you think of a jazzier name?” and she said, “Who are you going to talk to?” and I said, “Doug McIlroy.” And she said, “Well, what did he do?” I said, “Well, he had something to do with pipes.” She said, “Why don’t you call it Pipe Dream?”

MSM:	 I do want to talk about pipes, because Ritchie says in his retrospective that, not only was it your suggestion, but indeed, he suggests, at your insistence.

McIlroy: That is one of the only places where, I very nearly exerted managerial control over UNIX, in pushing for those things. Yes.

MSM:	 Why pipes?

McIlroy: Why pipes?

MSM:	 Where did the idea come from?

McIlroy: Goes way back. There was… in the early sixties, Conway wrote an article about Co-routines. Sixty-three, perhaps in the CACA, I had been doing macros, starting back in ‘59 or ‘60. And if you think about macros, they mainly involve switching data streams. You’re taking in your input, you suddenly come to a macro call, and that says, stop taking input from here, go take it from the definition. In the middle of the definition, you’ll find another macro call. So, macros… even as early as ‘64… Somewhere I talked of a macro processor as a switchyard for data streams. Also, in ‘64, there’s a paper that’s hanging on Brian’s wall, still. He dredged out somewhere, where I talked about screwing together streams like garden hoses.

So, this idea had been ironed on in my head for a long time. On MULTICS, Joe Osanna, who was actually beginning to build a way to do input-output plumbing. Input-output was in interpreted over this idea of the segmented address space in the file system, really… files were really just segments of the same old address space. Nevertheless, you had to do I/O, because all the programming languages did it. And he was making ways of connecting programs together. They were fairly kludges and no one really exploited them, because you had to explicitly say connect this to that, and that to that. Nothing so nice as to piping operator in the shell appeared. And, at the same time that Thompson and Ritchie were, on their blackboard, sketching out their file system. I was sketching out on how to do data processing on this blackboard, by connecting together cascades of processes and looking for a kind of prefixed notation language for connecting processes together, and failing because… it’s very easy to say “cat into grep into… or who into cat into grep, and so on. It was very easy to say that, and it was clear from the start, that that was something you’d like to say. But, there are always side parameters that these commands have. They don’t just have input and output arguments, but they have the options. And syntactically, it was not clear how to stick the options into this chain of things written in prefix notation, “the cat of grep of who?”

Syntactic binders… didn’t see how to do it. So, I had these very pretty programs written on the blackboard in a language that wasn’t strong enough to cope with reality. So, we didn’t actually do it. Nevertheless, I tried to get, who was it…? somebody was playing with… was getting into the I/O system of the GE635 that the comp center had. We got that in anticipation of replacing it with the 645 the minute MULTICS was working. I asked them, could you make… I’ve got this wonderful I/O system… where you can… relatively device independent. By and large, you wrote the same way on tapes, as on disks, as on printers… in fact, that was true back in ESYS-3, the operating system that was built here for the 7090. Largely, device independent I/O calls, like many other operating systems. So, that device independence was something that was around here for a long time. It was clearly a beautiful mental model, this idea that the output from one process would just feed in as input to another. There was syntactic difficulty in talking about that mental model and I have a co-routine paper written in 1968 that was never, never printed, because, it was always a little too ugly, struggling with syntax.

MSM:	 I understand that one time you were thinking of an infix notation. According to Ritchie’s article, you were going to use your pipe… we see these piping as form of operator, linking two arguments, it would be an infix notation.

McIlroy: Yes, yes. Well, we finally… or a filter, a whole filter process was going to be an operator between two arguments… and I… over a period from 1970 til ’72, I would, from time to time, say how about making something like this… and I would put up another proposal, another proposal, another proposal. Then one day I came up with a syntax for the shell, that went along with the piping and Ken said, “I’m gonna do it.” He was tired of hearing all this stuff… and that was certainly what makes it… that… you read about it several times I’m sure. That was absolutely a fabulous day, the next day too. “I’m gonna do it.” He didn’t do exactly what I had proposed for the pipe system call. He invented a slightly better one, that finally got changed once more to what we have today. He did use my clumsy syntax and we simply this is passing it through… this is going to be another process. He put pipes into UNIX. He put this notation into the shell, all in one night. The next morning we had this… people came in, people came in… Oh, and he also changed a lot of… most of the programs up until that time, couldn’t take standard input. Because, there wasn’t the real need. They had file arguments. Grep had a file argument, Cat had a file argument. Thompson saw that that wasn’t going to fit into this scheme of things, and he went in and changed all those programs in the same night. I don’t know how. In the next morning we had this orgy of “one liners.” Everybody had one liner. Look at this, look at that.

Nroff had a program called OV, Overlay. It was to make multi-column output. What you did was (writing on blackboard), out of nroff, you produced a series of pages like this. One page had stuff over here. The next page had stuff over here and then OV would OR these two pages together. Then it was into nroff, into OV, into OV, into the printer. Four column output. All that happened. However… and if you go back look at the UNIX manual we wrote about this, discussion of how to use pipes in the shell goes on for a whole page. It clearly had not yet been internalized. Because, now… Is this much in the shell manual that describes what pipes are all about?

One of them had to explain the syntax. How you recognize which “greater than” is to the file. And you also had “less than.” Which were really funny. Less than a process.

When Thompson was to give a talk on UNIX at a meeting in London. We all said, what you really want is function decatenation, and we would write informally a little function decatenation symbol.

MSM:	 Yeah.

McIlroy: To prepare this talk. Thompson said, “Let’s take it simple one, and took that one, and distinguished it from the “greater than” for files, and then he could give a respectable talk. I can remember giving a talk at WG2.3, just two weeks after pipes were up, and apologetically talking about this. Folks are not reticent with their criticism of 2.3. They said that’s ridiculous, “you gotta have better intake,” and the better intake did come a few months later.

MSM:	 This is my get that, because I haven’t got a video camera on this.

McIlroy: I think that notation is somewhere in Dennis’ paper.

MSM:	 It’s in Dennis’ paper.. What’s not in Dennis’ paper is the story about the meeting of Ken (Thompson) and you.

McIlroy: Cleaning up of something so you can talk about it is really quite difficult. Every time a manual, another edition of a manual would be made, there would be a flurry of activity. When you wrote down the uglies, we’d say; “We can’t put this in print.” Take features out, or put features in, in order to make them easier to talk about. The virtue of being in a research center… you don’t have to keep any old software running.

MSM:	 Incompatibility is a human function?

McIlroy: Right. Incompatibility is just a terrible burden born by IBM and Bell Labs selling facility. We’re trying make production. They have users who have code out there that works and probably nobody even who knows how to repair the code if any syntax or semantics are changed. So everything is competing… the burden of history is with them.

MSM:	 I was talking with… when I was working with Charlie Stenard down in Holmdel, we came up to see Carolyn Childs. I think it is. We were talking to her about the problem of maintenance of software, and the problems of trying maintaining it when you don’t have documentation. So, what kind of documentation would you like most of all? She said, “We would like some record of the decisions… of the things you didn’t do.” “The decisions you made not to do something. Because…

(END OF SIDE A; CONTINUED – SIDE B)

MSM:	 (It was a version of SREM -- not clear)…which is now called RDD 100, says that one of the values of that way of designing is that you can keep a record of your previous designs. And, in form of version control, go back and just archive that. You can always go back and see why it was you didn’t do something. Because, you got this problem here and this problem there.

McIlroy: That kind of stuff disappears, when the personnel… Well, in fact, it even disappears out of your own mind after three years. Somebody wrote me mail the other night, saying, “Why is such and such an option in diff?” I knew I put it in. And, as far as I knew it had no use. (Laughter) It was twenty four hours, before I realized it was special feature in there, just for the special benefit of one other program that used diff. Perhaps, I should have never perturbed diff. I should have put this glue outside, instead of in the program.

MSM:	 One of the lovely features of pipes is the way it reinforces the notion of the tool box.

McIlroy: Not only reinforced, almost created.

MSM:	 Well, that was my question. Was the notion of the tool there before… (interrupted)

McIlroy: No.

MSM:	 pipes… or did pipes create it?

McIlroy: Pipes created it.

MSM:	 UNIX looked different after pipes.

McIlroy: Yes. The philosophy that everybody started putting forth. This is the UNIX philosophy. Write programs that do one thing and do it well. Write programs to work together. Write programs that handle text streams because, that is a universal interface. All of those ideas, which add up to the tool approach, might have been there in some unformed way prior to pipes. But, they really came in afterwards.

MSM:	 Was this sort of your agenda? Specifically, what does it have to do with mass produced software?

McIlroy: Not much. It’s a completely different level than I had in mind. It would nice if I could say it was. (Laughter) It’s a realization. The answer is no. I had mind that one was going to build relatively small components. Good sub-routine libraries, but more tailorable than those that we knew from the past, that could be combined into programs. What has… the tool thing has turned out to be actually successful. People just think that way now. Fast providing programs, that work together. And, you can say, if you if stand back, it’s the same idea. But, it’s at a very different level. A higher level than I had in mind. Here, these programs worked together and they could work together at a distance. One day they can write a file, and tomorrow they can be able to read the file. That wasn’t what I had in mind with components. I had in mind, the car would not be very much use if its wheels were in another county. They were going to be an integral part of the car. Tools take the car and split it apart, and let the wheels do their thing and then let the engine do its thing and they don’t have to do them together. But, they can do them together if you wish.

MSM:	 Yeah. I take your point. If I understand it correctly, and think about it. A macro based on a pipeline is a interesting thing to have in your tool box. But, if you were going write a program, to do it, you wouldn’t just take the macro, you’d have to go and actually write a different program. It wouldn’t be put together out of components. In that sense.

McIlroy: So, when I wrote this critique a year or two ago of Knuth’s web demonstration. Joan Bentley got Knuth to demonstrate his web programming system. Which is a beautiful idea. You write a program in an order that fits the exposition of the program. rather than the order that fits the syntax of the programming language. And then you have a processor which takes the program written in expository order and turns it into a Pascal program and files it. The expository order not only contains program fragments, it contains lots of text right with it.

The declarations are stuck in at the point were you need them, rather than up at the head of the block. And then they’re moved by the web processor to the right place to compile the run. Really elegant, and he calls it, Knuth calls it literate programming. And Bentley asked him to write a demonstration literate program for Bentley’s’ Programming Pearls column. I wrote a critical report about Knuth’s program. It’s a little unfair, because his program was written as illustration and technique and I, my report criticizes it on engineering grounds, that that was not the right way to write the program. And one of the things I wrote about Knuth’s program was, (greased) text that prints out a list of the distinct words in the text and word counts, sorted by word count. Its an easy problem. And he wrote one monolithic program to do whole job and I said “Look, here’s the way we do it in UNIX with canonical pipelines, and although I don’t recommend it. This is not what he was out to do. I really think, he should have not put definition of what word is, into the program that builds tables. That these were completely unrelated things.

Now, in 1968, I would have thought he was doing just right. He was taking this sub-routine and that sub-routine, and putting them together in one program. Now, I don’t think that is just right. I think that the right way to do that job is as we do in UNIX in several programs, in several stages. Keeping their identity separate, except in cases where efficiency is of extreme importance. You never put the parts into more intimate contact. It’s silly. Because, once you’ve got them there, it’s hard to get them apart. You want to change from English to Norwegian, you have to go way to the heart of Knuth’s program. You really ought to be able to just change the pre-processors that recognize this is a different alphabet.

MSM:	 Going back to..

McIlroy: So, I learned a lot from Brian. Who really is the guy, the person who articulated the tools idea. It seemed to be in the air, but it was not an overt communicable design philosophy. You discovered it only by hanging around the UNIX room. Brian, put it out of the world.

MSM:	 Now, this is before or after piping?

McIlroy: After.

MSM:	 Your sense is that pipe (galvanize) was not true? But, it was there in embryo?

McIlroy: To some extent the shell… The ease of writing a shell script in UNIX. There had been something like that on CTSS before. But, it wasn’t easy. You couldn’t do more than six commands in it. It had very curious limitations. You could do six things, but not seven. Very ease of writing the shell script. Tomorrow capturing… having a machine govern or guide a set of processes, that yesterday were guided by humans, was certainly in Thompson’s dream. And he did a beautiful job of bringing it to reality.

So, we were all ready. Because it was so easy to compose processes with shell scripts. We were already doing that. But, when you have to decorate or invent the name of intermediate files and every area has to say put your file there. And the next one say get your input from there. The clarity of composition, of function which you perceived in your mind when you wrote the program, is lost in the program. Whereas the piping symbol keeps it. It’s the old thing about, notations are important.

MSM:	 I just got through beating somebody up about that. I’m not going to call on Newton.

(Laughing)

MSM:	 Just the dangers of translating Newton’s geometry into algebra and what you want to understand as Newton’s habits of thought. He thought in geometry. He did not translate it from the functions.

McIlroy: He did not.

MSM:	 He never wrote that text in anything but geometrical form.

McIlroy: Did he discover the theorems, in geometrical form? All of those method of exhaustion arguments were. (Laugh)

MSM:	 No. Those are after the fact. They’re meant to give logical rigor to what was a more intuitive form of … Which is not classical geometry. It’s an infinitesimallist geometry that was developed by people like Karl (Jurding -- Not Clear) and others in 17th century. I’ll send you the article.

McIlroy: Yeah. So, he really did it?

MSM:	 No, he did it geometrically.

MSM:	 Christian Huygens, among others, taught him how to do that. Not… I mean, indirectly through his work. But, it was common to think in geometric terms. Because, actually, you could see your parameters. But, also, when you went to the continuous case, you would quite often lose your parameters. For example if you were… as he does in first proposition, talking about Keplerian motion you have the body, it’s moving like that, here’s your center force. Now, imagine it moving for a short period of time at uniform speed. Now, give it a push. Then it will move like that. Give it a push toward the center, and it will move like that. Well, these are impulses and then he just goes to a continuous curve, by shortening the intervals and increasing the number of pulses until you get to the continuous curve. The trouble is that geometrically, what you do is you lose your geometric measure of the velocity.

McIlroy: Yeah.

MSM:	 So, you have to relocate it. Well it turns out that if you draw… if you have an orbit with the center force here, and you want to know what velocity is here, you draw the tangent to the curve and draw a perpendicular to that tangent and the velocity is inversely proportional to that length. And you prove it as a separate theorem, to show that’s the case. And that is … (interrupted)

McIlroy: So, when you do the algebraic… when you do the usual algebraic derivation, and pulling a rabbit out of a hat. They convert from r, to 1 over r, and the equations become nice? (laughter) Are they generated? (laughter)

 MSM:	 It would be nice to say that they are a translation of that. But no, the beauty of Algebra is that you don’t worry about dimensionality. And you don’t worry about losing terms. Because, ultimately you have a picture of an orbit here, which is a physical object in space. Well, there’s no room in space of three dimensions for things like velocity, acceleration, time... so that any time you draw them on a diagram, you’re imposing another dimensionality. And then you have to be able to work in several dimensions and are not using it another way. Whereas in the Calculus, it’s just a question of how you write your terms and you can keep all your dimensions in multidimensional space.

McIlroy: But there is this amazing transformation that turns the equations of orbital motion. If you use 1 over r, instead of r, as your dependent variable, the equations are nice.

MSM:	 Yes. I’ve done the trick. But, no. That does not come from that. Anyway, you’re right, notation makes a difference.

McIlroy: The… We talk about more elaborate… So, pipes are there for linear pipelines. More elaborate arrangements, such as we talked about in a language from NSA called POCAL. A data processing language, this was an amazing language which data processing… you… often problem or solution is expressed with pictures of here’s the tape being carried here to there and it’s being put onto cards, and what you’re seeing is a data flow diagram, and not a classical program flow diagram. They had the idea that the data flow diagram was really the right way to express data processing, at a very fine grain. Even between two successive steps. So, we would put together a data processing application, as a whole bunch of little things connected up with files. Often fifty files. And then their compiler would optimize the files out of existence. It’s gotta be biggest optimizing compiler (interrupted by laughter). You know, when you throw away a file pass, that’s really different from saving an instruction which most optimizing compilers do. A very impressive optimizing compiler. It would throw away as many files as it could. Even when there’s loop structures, if it could, by reading the code, determine that there would be a bounded feedback cue, then all you need to do is provide enough temporary storage to handle the bounding cue, and… furthermore, when there are loop structures, you can’t do it with real live files. Because, you have to start reading the file… real live tapes, which is what they had at the time… because you have to start reading the tape while you’re still writing it. How did I get onto POCAL? (laughter) Oh, other topologies of pipes.

MSM:	 Let me ask you about topologies and pipes that is mentioned, and that’s APL… as a form of pipelining process. Or, a language that pipelines.

McIlroy: APL? Yes. It’s the beautiful prefix… this composition of functions. Certainly APL was one of the things in mind when I was doing these blackboard exercises.

MSM:	 That was my question. Did you have APL in mind?

McIlroy: That was certainly in mind and APL just did not allow us to have operators with variance. Such as only options, that our utilities had. As long as you take the good clean operators, it’s a beautiful notation. It only took us one willingness to throw in a new separator, the vertical bar and we were able to handle that, but it took us about four years, from the time we started talking about it, to the time it happened.

MSM:	 Let me ask you what you were thinking about in another sense, and that is related to something we were talking about when I had lunch here the last time. Which to the extent to which UNIX is the instantiation of… really a theory of computing… of ideas in computer science. YACC, the instantiation of a theory of (cursors -- not clear), blanks, of finite automata and so on.

To what extent can we take something like pipeline? You could treat pipes as they appear in any instantiation as the instantiation of a mathematical idea and what was the relationship over these early years between theoretical comp sci. What were you thinking about? Were you thinking about how to get an operating system working… a computing system working… or were there a set of ideas that you people were pursuing… that you were using this project to test out?

McIlroy: Well, there were two. I would say that most of us, the theory was there on the side and we were certainly alert to it. I went to Oxford for a year, solely so I could imbibe the notation semantics from the source.

MSM:	 I lived with him in the same program for two years and didn’t realize he was the source. (Laughing) Daniel was part of the history of science program at Princeton for two years.

McIlroy: He had been at Oxford just the year before I was. But Strachey was sort of the catalyst for the whole thing. Although Dana was the one who made it mathematically respectable.

MSM:	 You had gone to work with Strachey?

McIlroy: I went to work with Strachey. Most of us are more computer types than mathematicians. Even though we write papers occasionally with mathematical… With exception of the language theory. I had in my department, system builders like Thompson, and theoretical computer scientists like Aho. And Aho plowed the fields of language theory from ‘60… He joined us in around ‘66.. Just around the same time as Thompson. Handing out paper after paper of slightly different models of parsing, and automata. And that was supported with the overt idea that one day out of it, this really would feed computing practice. Even though it was not. In the same way, we have we have today folks working on denotational semantics. Which seems to be a longer term. But, I have the same belief that semantics, is going to be change practice, and ML is the current embodiment of that. This long line of playing with the mathematical ideas. Which happened all over the country. It wasn’t just here. Finally led to Knuth’s one paper on LR parsing. Which got repatriated back here, and one day Steve Johnson went in to Al Aho, although I wasn’t present, I’m attributing something here… and said, “I want to make your stuff work”. We had compiler compilers before TMG. And in some ways, TMG was nicer than YACC. Not specification of grammar, but it actually helps you do the translation. YACC only helps you do the parsing, it’s up to you to do the translation after that.

When the sound theory of parsing went into a compiler writing system, it became available to the masses. It.. . There is a case where, there’s absolutely no doubt that, overtly, theory fed into what we do. There are lots of other places where theory is an inspiration, or it’s in the back of your mind. Very few of them are… well the regular expression business also came out of automata theory. Thompson wrote one famous recognizer, which is the one that’s still in GREP. And Al Aho decided that he was going to take that part of automata theory, he built EGREP. Which determine… you have the deterministic one in EGREP, and the nondeterministic one in GREP. I think really that YACC and GREP are what people hold up the “real tools” and… they are the ones where we find a strong theoretical underpinning. troff has none. And of course it’s used, and indispensable. Nobody holds up it as a programming gem. (Laughing)

MSM:	 When I used YACC, in the compiler course that Sethi taught us at Princeton, one liked to go in and actually look at the statement. And in my urgency, I have no desire to look into MS… (Laughing) …and see what those macros are.

(Laughing)

McIlroy: … if you do look at it once, you recoil in just absolute terror. You know, there’s no model there. It’s true of all its competitors, too.

MSM:	 Things like TECC, are slightly more powerful…

McIlroy: …but, fundamentally they are the same thing. You still don’t have a model of what typesetting is about. But, one of the difficulties is it’s partly esthetic. You cannot bend page to meet some theoretical requirements. Nobody cares what you’re compiler looks like on the inside, so you can bend it to agree with a automata theory. troff has to feed into a different market…

MSM:	 Yea, and you’re also, it seems to me with tools like YACC, accomplishing more than just getting a compiler together, you’re getting some assurance about ambiguity… If it says that there’s an equivocation in it, then there certainly is. But, if whether you’re really healthy if you get a clean bill of health... but still, it’s comforting to know that you’ve gone through there and you don’t have any ambiguities in it.

McIlroy: This is the nice about programming in a language like ML. Which we have not... I have not yet been able to say all right I’m going to abandon C, I’m going to write in ML. I think I ought to. But, I will have burned my bridges. I will no longer be able to work with… I will have left all these old parts… that I could use. Starting from scratch. But, there’s a language which is built on mathematical ideas of algebra. Category theory… how imposition of functions and higher level functions in that language… Functions that work on functions… Functions are return functions… Come straight out of modern algebra.

MSM:	 I haven’t seen this. Is there text now available?

McIlroy: There is a book available. It’s a job jointly done, by Edinburgh who are in the center and Dave McQueen here… and now there’s also a big outpost of it at Cornell. I think it spread… In England where they like their computer science to be more scientific, I think it’s spreading quite well.

MSM:	 The Algebraic reminds me of sort of the use of set theoretic specification through to Z and… at Oxford. When I was looking at it, it seemed to be more mathematical than would suit the American taste, or at least homegrown taste. So, I’ve ordered it.

MSM:	 ML, I’ll take a look at it. And you say there is a book out on it?

McIlroy: Yeah.

MSM:	 One of my interests, as an historian in mathematics, is the effort to mathematize computing. One thinks of the computer as a mathematical instrument, and of course it is. The difficulty of getting it and capturing it in mathematical forms, especially dynamic behavior of programs, makes an interesting chapter in efforts at mathematization. …and what it would mean to mathematize it.

McIlroy: It’s interesting that computers are feeding back into the foundations of mathematics. I think computing is the engine that’s driving type theory now.

MSM:	 Type theory through mathematical logic.

McIlroy: Yeah, the logicians are now getting their inspiration from the computing side.

MSM:	 Good, I’m glad there’s a justification for it. Because, I must say when I first encountered it, I thought... the problem can’t be that bad, that we have to go through this.

McIlroy: But, sound, type theory, is really at the heart of design of a language like ML. We often talk strongly typed languages, but the idea doesn’t really mean much until you get to second order functions and polymorphic functions. The general identity function in that identity can be applied to anything. It just produces.... (END OF TAPE)

M.D. McIlroy, page � PAGE �15�

