

Table of Contents

	Preface

	Introduction

	Building and Installing Wireshark

	User Interface

	Capturing Live Network Data

	File Input, Output, And Printing

	Working With Captured Packets

	Advanced Topics

	Statistics

	Telephony

	Wireless

	Customizing Wireshark

	MATE

	Appendix A: Wireshark Messages

	Appendix B: Files and Folders

	Appendix C: Protocols and Protocol Fields

	Appendix D: Related command line tools

	This Document’s License (GPL)

Preface

Foreword

 Wireshark is the world’s foremost network protocol analyzer,
but the rich feature set can be daunting for the unfamiliar.
This document is part of an effort by the Wireshark team to improve
Wireshark’s usability.
We hope that you find it useful and look forward to your comments.

Who should read this document?

 The intended audience of this book is anyone using Wireshark.

This book explains all of the basic and some advanced features
of Wireshark. As Wireshark has become a very complex program,
not every feature may be explained in this book.

This book is not intended to explain network sniffing in general and it
will not provide details about specific network protocols. A lot of
useful information regarding these topics can be found at the Wireshark
Wiki at https://wiki.wireshark.org/.

By reading this book, you will learn how to install Wireshark, how to use the
basic elements of the graphical user interface (such as the menu) and what’s
behind some of the advanced features that are not always obvious at first sight.
It will hopefully guide you around some common problems that frequently appear
for new (and sometimes even advanced) Wireshark users.

Acknowledgements

 The authors would like to thank the whole Wireshark team for their assistance.
In particular, the authors would like to thank:

	
Gerald Combs, for initiating the Wireshark project and funding to do this
documentation.

	
Guy Harris, for many helpful hints and a great deal of patience in reviewing
this document.

	
Gilbert Ramirez, for general encouragement and helpful hints along the way.

The authors would also like to thank the following people for their helpful
feedback on this document:

	
Pat Eyler, for his suggestions on improving the example on generating a backtrace.

	
Martin Regner, for his various suggestions and corrections.

	
Graeme Hewson, for many grammatical corrections.

The authors would like to acknowledge those man page and README authors for the
Wireshark project from who sections of this document borrow heavily:

	
Scott Renfro from whose mergecap man page mergecap: Merging multiple capture files into one is derived.

	
Ashok Narayanan from whose text2pcap man page text2pcap: Converting ASCII hexdumps to network captures is derived.

About this document

 This book was originally developed by Richard
Sharpe with funds provided from the Wireshark Fund. It was updated by
Ed Warnicke and more recently redesigned and
updated by Ulf Lamping.

It was originally written in DocBook/XML and converted to AsciiDoc by
Gerald Combs.

Where to get the latest copy of this document?

 The latest copy of this documentation can always be found at
https://www.wireshark.org/docs/wsug_html_chunked/.

Providing feedback about this document

 Should you have any feedback about this document, please send it to the
authors through wireshark-dev[AT]wireshark.org.

Typographic Conventions

 The following table shows the typographic conventions that are used in this guide.

Table 1. Typographic Conventions

	Style
	Description
	Example

	Italic

	File names, folder names, and extensions

	C:\Development\wireshark.

	Monospace

	Commands, flags, and environment variables

	CMake’s -G option.

	Bold Monospace

	Commands that should be run by the user

	Run cmake -G Ninja ...

	Button

	Dialog and window buttons

	Press Launch to go to the Moon.

	Key

	Keyboard shortcut

	Press Ctrl+Down to move to the next packet.

	Menu

	Menu item

	Select Go › Next Packet to move to the next packet.

Admonitions

 Important and notable items are marked as follows:

This is a warning

You should pay attention to a warning, otherwise data loss might occur.

This is a caution

Act carefully (i.e., exercise care).

This is important information

RTFM - Read The Fine Manual

This is a tip

Tips are helpful for your everyday work using Wireshark.

This is a note

A note will point you to common mistakes and things that might not be obvious.

Shell Prompt and Source Code Examples

 Listing 1. Bourne shell, normal user
 $ # This is a comment
$ git config --global log.abbrevcommit true

Listing 2. Bourne shell, root user
 # # This is a comment
ninja install

Listing 3. Command Prompt (cmd.exe)
 >rem This is a comment
>cd C:\Development

Listing 4. PowerShell
 PS$># This is a comment
PS$> choco list -l

Listing 5. C Source Code
 #include "config.h"

/* This method dissects foos */
static int
dissect_foo_message(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree _U_, void *data _U_)
{
 /* TODO: implement your dissecting code */
 return tvb_captured_length(tvb);
}

Introduction

What is Wireshark?

 Wireshark is a network packet analyzer. A network packet analyzer
presents captured packet data in as much detail as possible.

You could think of a network packet analyzer as a measuring device for
examining what’s happening inside a network cable, just like an electrician uses
a voltmeter for examining what’s happening inside an electric cable (but at a
higher level, of course).

In the past, such tools were either very expensive, proprietary, or both.
However, with the advent of Wireshark, that has changed. Wireshark is
available for free, is open source, and is one of the best packet
analyzers available today.

Some intended purposes

 Here are some reasons people use Wireshark:

	
Network administrators use it to troubleshoot network problems

	
Network security engineers use it to examine security problems

	
QA engineers use it to verify network applications

	
Developers use it to debug protocol implementations

	
People use it to learn network protocol internals

Wireshark can also be helpful in many other situations.

Features

 The following are some of the many features Wireshark provides:

	
Available for UNIX and Windows.

	
Capture live packet data from a network interface.

	
Open files containing packet data captured with tcpdump/WinDump,
Wireshark, and many other packet capture programs.

	
Import packets from text files containing hex dumps of packet data.

	
Display packets with very detailed protocol information.

	
Save packet data captured.

	
Export some or all packets in a number of capture file formats.

	
Filter packets on many criteria.

	
Search for packets on many criteria.

	
Colorize packet display based on filters.

	
Create various statistics.

	
…​and a lot more!

However, to really appreciate its power you have to start using it.

Wireshark captures packets and lets you examine their contents. shows Wireshark having captured some packets and waiting for you
to examine them.

[image: ws main]

Figure 1. Wireshark captures packets and lets you examine their contents.

Live capture from many different network media

 Wireshark can capture traffic from many different network media types,
including Ethernet, Wireless LAN, Bluetooth, USB, and more. The specific media
types supported may be limited by several factors, including your hardware
and operating system. An overview of the supported media types can be found at
https://wiki.wireshark.org/CaptureSetup/NetworkMedia.

Import files from many other capture programs

 Wireshark can open packet captures from a large number of capture
programs. For a list of input formats see Input File Formats.

Export files for many other capture programs

 Wireshark can save captured packets in many formats, including those used by other
capture programs. For a list of output formats see Output File Formats.

Many protocol dissectors

 There are protocol dissectors (or decoders, as they are known in other products)
for a great many protocols: see [AppProtocols].

Open Source Software

 Wireshark is an open source software project, and is released under the
GNU General Public License (GPL). You can freely use
Wireshark on any number of computers you like, without worrying about license
keys or fees or such. In addition, all source code is freely available under the
GPL. Because of that, it is very easy for people to add new protocols to
Wireshark, either as plugins, or built into the source, and they often do!

What Wireshark is not

 Here are some things Wireshark does not provide:

	
Wireshark isn’t an intrusion detection system. It will not warn you when
someone does strange things on your network that he/she isn’t allowed to do.
However, if strange things happen, Wireshark might help you figure out what is
really going on.

	
Wireshark will not manipulate things on the network, it will only “measure”
things from it. Wireshark doesn’t send packets on the network or do other
active things (except domain name resolution, but that can be disabled).

System Requirements

 The amount of resources Wireshark needs depends on your environment and on the
size of the capture file you are analyzing. The values below should be fine for
small to medium-sized capture files no more than a few hundred MB. Larger
capture files will require more memory and disk space.

Busy networks mean large captures

A busy network can produce huge capture files. Capturing on
even a 100 megabit network can produce hundreds of megabytes of
capture data in a short time. A computer with a fast processor, and lots of
memory and disk space is always a good idea.

If Wireshark runs out of memory it will crash. See
https://wiki.wireshark.org/KnownBugs/OutOfMemory for details and workarounds.

Although Wireshark uses a separate process to capture packets, the packet
analysis is single-threaded and won’t benefit much from multi-core systems.

Microsoft Windows

 Wireshark should support any version of Windows that is still within its
extended support
lifetime. At the time of writing this includes Windows 11, 10,
Server 2022,
Server 2019,
and Server 2016.
It also requires the following:

	
The Universal C Runtime. This is included with Windows 10 and Windows
Server 2019 and is installed automatically on earlier versions if
Microsoft Windows Update is enabled. Otherwise you must install
KB2999226 or
KB3118401.

	
Any modern 64-bit Intel or Arm processor.

	
500 MB available RAM. Larger capture files require more RAM.

	
500 MB available disk space. Capture files require additional disk space.

	
Any modern display. 1280 × 1024 or higher resolution is
recommended. Wireshark will make use of HiDPI or Retina resolutions if
available. Power users will find multiple monitors useful.

	
A supported network card for capturing

	
Ethernet. Any card supported by Windows should work. See the wiki pages on
Ethernet capture and
offloading for issues that
may affect your environment.

	
802.11. See the Wireshark
wiki page. Capturing raw 802.11 information may be difficult without
special equipment.

	
Other media. See https://wiki.wireshark.org/CaptureSetup/NetworkMedia.

Older versions of Windows which are outside Microsoft’s extended lifecycle
support window are no longer supported. It is often difficult or impossible to
support these systems due to circumstances beyond our control, such as third
party libraries on which we depend or due to necessary features that are only
present in newer versions of Windows such as hardened security or memory
management.

	
Wireshark 4.2 was the last release branch to officially support Windows 10.

	
Wireshark 4.0 was the last release branch to officially support Windows 8.1 and Windows Server 2012.

	
Wireshark 3.6 was the last release branch to officially support 32-bit Windows.

	
Wireshark 3.2 was the last release branch to officially support Windows 7 and Windows Server 2008 R2.

	
Wireshark 2.2 was the last release branch to support Windows Vista and Windows Server 2008 sans R2

	
Wireshark 1.12 was the last release branch to support Windows Server 2003.

	
Wireshark 1.10 was the last release branch to officially support Windows XP.

See the Wireshark release lifecycle page for more details.

macOS

 Wireshark supports macOS 11 and later.
Similar to Windows, supported macOS versions depend on third party libraries and on Apple’s requirements.

	
Wireshark 4.2 was the last release branch to support macOS 10.14.

	
Wireshark 3.6 was the last release branch to support macOS 10.13.

	
Wireshark 3.4 was the last release branch to support macOS 10.12.

	
Wireshark 2.6 was the last release branch to support Mac OS X 10.6 and 10.7 and OS X 10.8 to 10.11.

	
Wireshark 2.0 was the last release branch to support OS X on 32-bit Intel.

	
Wireshark 1.8 was the last release branch to support Mac OS X on PowerPC.

See the Wireshark release lifecycle page for more details.

The system requirements should be comparable to the specifications listed above for Windows.

UNIX, Linux, and BSD

 Wireshark runs on most UNIX and UNIX-like platforms including Linux and most BSD variants.
The system requirements should be comparable to the specifications listed above for Windows.

Binary packages are available for most Unices and Linux distributions
including the following platforms:

	
Alpine Linux

	
Arch Linux

	
Canonical Ubuntu

	
Debian GNU/Linux

	
FreeBSD

	
Gentoo Linux

	
HP-UX

	
NetBSD

	
OpenPKG

	
Oracle Solaris

	
Red Hat Enterprise Linux / CentOS / Fedora

If a binary package is not available for your platform you can download
the source and try to build it. Please report your experiences to
wireshark-dev[AT]wireshark.org.

Where To Get Wireshark

 You can get the latest copy of the program from the Wireshark website at https://www.wireshark.org/download.html.
The download page should automatically highlight the appropriate download for your platform and direct you to the nearest mirror.
Official Windows and macOS installers are signed by Wireshark Foundation using trusted certificates on those platforms.
macOS installers are additionally notarized.

A new Wireshark version typically becomes available every six weeks.

If you want to be notified about new Wireshark releases you should subscribe to the wireshark-announce mailing list.
You will find more details in Mailing Lists.

Each release includes a list of file hashes which are sent to the wireshark-announce mailing list and placed in a file named SIGNATURES-x.y.z.txt.
Announcement messages are archived at https://lists.wireshark.org/archives/wireshark-announce/ and SIGNATURES files can be found at https://www.wireshark.org/download/src/all-versions/.
Both are GPG-signed and include verification instructions for Windows, Linux, and macOS.
As noted above, you can also verify downloads on Windows and macOS using the code signature validation features on those systems.

A Brief History Of Wireshark

 In late 1997 Gerald Combs needed a tool for tracking down network problems
and wanted to learn more about networking so he started writing Ethereal (the
original name of the Wireshark project) as a way to solve both problems.

Ethereal was initially released after several pauses in development in July
1998 as version 0.2.0. Within days patches, bug reports, and words of
encouragement started arriving and Ethereal was on its way to success.

Not long after that Gilbert Ramirez saw its potential and contributed a
low-level dissector to it.

In October, 1998 Guy Harris was looking for something better than tcpview so he
started applying patches and contributing dissectors to Ethereal.

In late 1998 Richard Sharpe, who was giving TCP/IP courses, saw its potential
on such courses and started looking at it to see if it supported the protocols
he needed. While it didn’t at that point new protocols could be easily added.
So he started contributing dissectors and contributing patches.

The list of people who have contributed to the project has become very long
since then, and almost all of them started with a protocol that they needed that
Wireshark did not already handle. So they copied an existing dissector and
contributed the code back to the team.

In 2006 the project moved house and re-emerged under a new name: Wireshark.

In 2008, after ten years of development, Wireshark finally arrived at version
1.0. This release was the first deemed complete, with the minimum features
implemented. Its release coincided with the first Wireshark Developer and User
Conference, called Sharkfest.

In 2015 Wireshark 2.0 was released, which featured a new user interface.

In 2023 Wireshark moved to the Wireshark Foundation, a nonprofit corporation that operates under section 501(c)(3) of the U.S. tax code.
The foundation provides the project’s infrastructure, hosts SharkFest, our developer and user conference, and promotes low level network education.

Development And Maintenance Of Wireshark

 Wireshark was initially developed by Gerald Combs. Ongoing development and
maintenance of Wireshark is handled by the Wireshark team, a loose group of
individuals who fix bugs and provide new functionality.

There have also been a large number of people who have contributed
protocol dissectors to Wireshark, and it is expected that this will
continue. You can find a list of the people who have contributed code to
Wireshark by checking the about dialog box of Wireshark, or at the
authors page on the Wireshark web site.

Wireshark is an open source software project, and is released under the
GNU General Public License (GPL) version 2. All source code is
freely available under the GPL. You are welcome to modify Wireshark to suit your
own needs, and it would be appreciated if you contribute your improvements back
to the Wireshark team.

You gain three benefits by contributing your improvements back to the community:

	
Other people who find your contributions useful will appreciate them, and you
will know that you have helped people in the same way that the developers of
Wireshark have helped you.

	
The developers of Wireshark can further improve your changes or implement
additional features on top of your code, which may also benefit you.

	
The maintainers and developers of Wireshark will maintain your code,
fixing it when API changes or other changes are made, and generally keeping it
in tune with what is happening with Wireshark. So when Wireshark is updated
(which is often), you can get a new Wireshark version from the website
and your changes will already be included without any additional effort from you.

The Wireshark source code and binary kits for some platforms are all
available on the download page of the Wireshark website:
https://www.wireshark.org/download.html.

Reporting Problems And Getting Help

 If you have problems or need help with Wireshark there are several places that
may be of interest (besides this guide, of course).

Website

 You will find lots of useful information on the Wireshark homepage at
https://www.wireshark.org/.

Wiki

 The Wireshark Wiki at https://wiki.wireshark.org/ provides a
wide range of information related to Wireshark and packet capture in general.
You will find a lot of information not part of this user’s guide. For example,
it contains an explanation how to capture on a switched network, an ongoing effort
to build a protocol reference, protocol-specific information, and much more.

And best of all, if you would like to contribute your knowledge on a specific
topic (maybe a network protocol you know well), you can edit the wiki pages
with your web browser.

Q&A Site

 The Wireshark Q&A site at https://ask.wireshark.org/ offers a resource where
questions and answers come together. You can search for
questions asked before and see what answers were given by people who
knew about the issue. Answers are ranked, so you can easily pick out the best
ones. If your question hasn’t been discussed before you can post
one yourself.

FAQ

 The Frequently Asked Questions lists often asked questions and their
corresponding answers.

Read the FAQ

Before sending any mail to the mailing lists below, be sure to read the FAQ. It
will often answer any questions you might have. This will save yourself and
others a lot of time. Keep in mind that a lot of people are subscribed to the
mailing lists.

You will find the FAQ inside Wireshark by clicking the menu item Help/Contents
and selecting the FAQ page in the dialog shown.

An online version is available at the Wireshark website at
https://www.wireshark.org/faq.html. You might prefer this online version, as it’s
typically more up to date and the HTML format is easier to use.

Mailing Lists

 There are several mailing lists of specific Wireshark topics available:

	
wireshark-announce

	
Information about new program releases, which usually appear about every six weeks.

	
wireshark-users

	
Topics of interest to users of Wireshark.
People typically post questions about using Wireshark and others (hopefully) provide answers.

	
wireshark-dev

	
Topics of interest to developers of Wireshark.
If you want to develop a protocol dissector or update the user interface, join this list.

You can subscribe to each of these lists from the Wireshark web site:
https://www.wireshark.org/lists/. From there, you can choose which mailing
list you want to subscribe to by clicking on the
Subscribe/Unsubscribe/Options button under the title of the relevant
list. The links to the archives are included on that page as well.

The lists are archived

You can search in the list archives to see if someone asked the same question
some time before and maybe already got an answer. That way you don’t have to
wait until someone answers your question.

Reporting Problems

Before reporting any problems, please make sure you have installed the latest
version of Wireshark.

When reporting problems with Wireshark please supply the following information:

	
The version number of Wireshark and the dependent libraries linked with it,
such as Qt or GLib. You can obtain this from Wireshark’s about box or the
command wireshark -v.

	
Information about the platform you run Wireshark on
(Windows, Linux, etc. and 32-bit, 64-bit, etc.).

	
A detailed description of your problem.

	
If you get an error/warning message, copy the text of that message (and also a
few lines before and after it, if there are some) so others may find the
place where things go wrong. Please don’t give something like: “I get a
warning while doing x” as this won’t give a good idea where to look.

Don’t send confidential information!

If you send capture files to the mailing lists be sure they don’t contain any
sensitive or confidential information like passwords or personally identifiable
information (PII).

In many cases you can use a tool like TraceWrangler to sanitize a capture file before sharing it.

Don’t send large files

Do not send large files (> 1 MB) to the mailing lists. Instead, provide a
download link. For bugs and feature requests, you can create an issue on
GitLab Issues and upload the file there.

Reporting Crashes on UNIX/Linux platforms

 When reporting crashes with Wireshark it is helpful if you supply the traceback
information along with the information mentioned in “Reporting Problems”.

You can obtain this traceback information with the following commands on UNIX or
Linux (note the backticks):

 $ gdb `whereis wireshark | cut -f2 -d: | cut -d' ' -f2` core >& backtrace.txt
backtrace
^D

If you do not have gdb available, you will have to check out your operating system’s debugger.

Email backtrace.txt to wireshark-dev[AT]wireshark.org.

Reporting Crashes on Windows platforms

 The Windows distributions don’t contain the symbol files (.pdb) because they are
very large. You can download them separately at
https://www.wireshark.org/download/win64/all-versions/ .

Building and Installing Wireshark

Introduction

 As with all things there must be a beginning and so it is with Wireshark. To
use Wireshark you must first install it. If you are running Windows or macOS
you can download an official release at https://www.wireshark.org/download.html, install it,
and skip the rest of this chapter.

If you are running another operating system such as Linux or FreeBSD you might
want to install from source. Several Linux distributions offer Wireshark
packages but they commonly provide out-of-date versions. No other versions of UNIX
ship Wireshark so far. For that reason, you will need to know where to get the
latest version of Wireshark and how to install it.

This chapter shows you how to obtain source and binary packages and how to
build Wireshark from source should you choose to do so.

The general steps are the following:

	
Download the relevant package for your needs, e.g., source or binary
distribution.

	
For source distributions, compile the source into a binary.
This may involve building and/or installing other necessary packages.

	
Install the binaries into their final destinations.

Obtaining the source and binary distributions

 You can obtain both source and binary distributions from the Wireshark main page or the download page at https://www.wireshark.org/download.html.
Select the package most appropriate for your system.

Installing Wireshark under Windows

 The official Windows packages can be downloaded from the Wireshark main page or the download page.
Installer names contain the version and platform.
For example, Wireshark-4.5.0-x64.exe installs Wireshark 4.5.0 for Windows on 64-bit Intel processors.
The Wireshark installer includes Npcap which is required for packet capture.
Windows packages automatically update.
See Updating Wireshark for details.

Simply download the Wireshark installer from https://www.wireshark.org/download.html and execute it.
Official packages are signed by Wireshark Foundation.
You can choose to install several optional components and select the location of the installed package.
The default settings are recommended for most users.

Installation Components

 On the Choose Components page of the installer you can select from the following:

	
Wireshark - The network protocol analyzer that we all know and mostly love.

	
TShark - A command-line network protocol analyzer. If you haven’t tried it
you should.

	
External Capture (extcap) - External Capture Interfaces

	
Androiddump - Provide capture interfaces from Android devices.

	
Etwdump - Provide an interface to read Event Tracing for Windows (ETW) event trace (ETL).

	
Randpktdump - Provide an interface to the random packet generator. (see also randpkt)

	
Sshdump, Ciscodump, and Wifidump - Provide remote capture through SSH. (tcpdump, Cisco EPC, wifi)

	
UDPdump - Provide capture interface to receive UDP packets streamed from network devices.

Additional Tasks

	
Wireshark Start Menu Item - Add a shortcut to the start menu.

	
Wireshark Desktop Icon - Add a Wireshark icon to the desktop.

	
Associate trace file extensions with Wireshark - Associate standard network trace files to Wireshark.

Install Location

 By default Wireshark installs into %ProgramFiles%\Wireshark on 32-bit Windows
and %ProgramFiles64%\Wireshark on 64-bit Windows. This expands to C:\Program
Files\Wireshark on most systems.

Installing Npcap

 The Wireshark installer contains the latest Npcap installer.

If you don’t have Npcap installed you won’t be able to capture live network
traffic but you will still be able to open saved capture files. By default the
latest version of Npcap will be installed. If you don’t wish to do this or if
you wish to reinstall Npcap you can check the Install Npcap box as needed.

For more information about Npcap see https://npcap.com/ and
https://wiki.wireshark.org/Npcap.

Windows installer command line options

 For special cases, there are some command line parameters available:

	
/S runs the installer or uninstaller silently with default values. The
silent installer will not install Npcap.

	
/desktopicon installation of the desktop icon, =yes - force installation,
=no - don’t install, otherwise use default settings. This option can be
useful for a silent installer.

	
/D sets the default installation directory ($INSTDIR), overriding InstallDir
and InstallDirRegKey. It must be the last parameter used in the command line
and must not contain any quotes even if the path contains spaces.

	
/NCRC disables the CRC check. We recommend against using this flag.

	
/EXTRACOMPONENTS comma separated list of optional components to install.
The following extcap binaries are supported.

	
androiddump - Provide interfaces to capture from Android devices

	
ciscodump - Provide interfaces to capture from a remote Cisco router through SSH

	
randpktdump - Provide an interface to generate random captures using randpkt

	
sshdump - Provide interfaces to capture from a remote host through SSH using a remote capture binary

	
udpdump - Provide a UDP receiver that gets packets from network devices

Example:

 > Wireshark-4.2.5-x64.exe /NCRC /S /desktopicon=yes /D=C:\Program Files\Foo

> Wireshark-4.2.5-x64.exe /S /EXTRACOMPONENTS=sshdump,udpdump

Running the installer without any parameters shows the normal interactive installer.

Manual Npcap Installation

 As mentioned above, the Wireshark installer also installs Npcap.
If you prefer to install Npcap manually or want to use a different version than the
one included in the Wireshark installer, you can download Npcap from
the main Npcap site at https://npcap.com/.

Update Npcap

 Wireshark updates may also include a new version of Npcap.
Manual Npcap updates instructions can be found on the Npcap web
site at https://npcap.com/. You may have to reboot your machine after installing
a new Npcap version.

Uninstall Wireshark

 You can uninstall Wireshark using the Programs and Features control panel.
Select the “Wireshark” entry to start the uninstallation procedure.

The Wireshark uninstaller provides several options for removal. The default is
to remove the core components but keep your personal settings and Npcap.
Npcap is kept in case other programs need it.

Uninstall Npcap

 You can uninstall Npcap independently of Wireshark using the Npcap entry
in the Programs and Features control panel. Remember that if you uninstall
Npcap you won’t be able to capture anything with Wireshark.

Building from source under Windows

 We strongly recommended using the binary installer for Windows unless you
want to start developing Wireshark on the Windows platform.

For further information how to obtain sources and build Wireshark for Windows
from the sources see the Developer’s Guide at:

	
https://www.wireshark.org/docs/wsdg_html_chunked/ChSrcObtain

	
https://www.wireshark.org/docs/wsdg_html_chunked/ChSetupWindows

You may also want to have a look at the Development Wiki
(https://wiki.wireshark.org/Development) for the latest available development
documentation.

Installing Wireshark under macOS

 The official macOS packages can be downloaded from the Wireshark main page or the download page.
They are signed by Wireshark Foundation.
Packages are distributed as disk images (.dmg) containing the application bundle.
Package names contain the platform and version.
To install Wireshark simply open the disk image and drag Wireshark to your /Applications folder.
macOS packages automatically update.
See Updating Wireshark for details.

In order to capture packets, you must install the “ChmodBPF” launch daemon.
You can do so by opening the Install ChmodBPF.pkg file in the Wireshark .dmg or from Wireshark itself by opening Wireshark › About Wireshark selecting the “Folders” tab, and double-clicking “macOS Extras”.

The installer package includes Wireshark along with ChmodBPF and system path packages.
See the included Read me first.html file for more details.

Installing the binaries under UNIX

 In general installing the binary under your version of UNIX will be specific to
the installation methods used with your version of UNIX. For example, under AIX,
you would use smit to install the Wireshark binary package, while under Tru64
UNIX (formerly Digital UNIX) you would use setld.

Installing from RPMs under Red Hat and alike

 Building RPMs from Wireshark’s source code results in several packages (most
distributions follow the same system):

	
The wireshark package contains the core Wireshark libraries and command-line
tools.

	
The wireshark or wireshark-qt package contains the Qt-based GUI.

Many distributions use yum or a similar package management tool to make
installation of software (including its dependencies) easier. If your
distribution uses yum, use the following command to install Wireshark
together with the Qt GUI:

 yum install wireshark wireshark-qt

If you’ve built your own RPMs from the Wireshark sources you can install them
by running, for example:

 rpm -ivh wireshark-2.0.0-1.x86_64.rpm wireshark-qt-2.0.0-1.x86_64.rpm

If the above command fails because of missing dependencies, install the
dependencies first, and then retry the step above.

Installing from debs under Debian, Ubuntu and other Debian derivatives

 If you can just install from the repository then use

 apt install wireshark

Apt should take care of all of the dependency issues for you.

Capturing requires privileges

By installing Wireshark packages non-root, users won’t gain rights automatically
to capture packets. To allow non-root users to capture packets follow the
procedure described in https://gitlab.com/wireshark/wireshark/-/blob/master/packaging/debian/README.Debian
(/usr/share/doc/wireshark-common/README.Debian.gz)

Installing from portage under Gentoo Linux

 Use the following command to install Wireshark under Gentoo Linux with all of
the extra features:

 USE="c-ares ipv6 snmp ssl kerberos threads selinux" emerge wireshark

Installing from packages under FreeBSD

 Use the following command to install Wireshark under FreeBSD:

 pkg_add -r wireshark

pkg_add should take care of all of the dependency issues for you.

Building from source under UNIX or Linux

 We recommended using the binary installer for your platform unless you
want to start developing Wireshark.

Building Wireshark requires the proper build environment including a
compiler and many supporting libraries. For more information, see the Developer’s Guide at:

	
https://www.wireshark.org/docs/wsdg_html_chunked/ChSrcObtain

	
https://www.wireshark.org/docs/wsdg_html_chunked/ChapterSetup#ChSetupUNIX

Updating Wireshark

 By default, Wireshark on Windows and macOS will check for new versions and notify you when they are available.
If you have the Check for updates preference disabled or if you run Wireshark in an isolated environment you should subscribe to the wireshark-announce mailing list to be notified of new versions.
See Mailing Lists for details on subscribing to this list.

New versions of Wireshark are usually released every four to six weeks.
Updating Wireshark is done the same way as installing it.
Simply download and run the installer on Windows, or download and drag the application on macOS.
A reboot is usually not required and all your personal settings will remain unchanged.

We offer two update channels, Stable and Development.
The Stable channel is the default, and only installs packages from stable (even-numbered) release branches.
The Development channel installs development and release candidate packages when they are available, and stable releases otherwise.
To configure your release channel, go to Preferences › Advanced and search for “update.channel”.
See Preferences for details.

User Interface

Introduction

 By now you have installed Wireshark and are likely keen to get started
capturing your first packets. In the next chapters we will explore:

	
How the Wireshark user interface works

	
How to capture packets in Wireshark

	
How to view packets in Wireshark

	
How to filter packets in Wireshark

	
…​ and many other things!

Start Wireshark

 You can start Wireshark from your shell or window manager.

Power user tip

When starting Wireshark it’s possible to specify optional settings using the
command line. See Start Wireshark from the command line for details.

The following chapters contain many screenshots of Wireshark. As
Wireshark runs on many different platforms with many different window managers,
different styles applied and there are different versions of the underlying GUI
toolkit used, your screen might look different from the provided screenshots.
But as there are no real differences in functionality these screenshots should
still be well understandable.

The Main window

 Let’s look at Wireshark’s user interface. The Main window shows Wireshark as you
would usually see it after some packets are captured or loaded (how to do this
will be described later).

[image: ws main]

Figure 2. The Main window

Wireshark’s main window consists of parts that are commonly known from many
other GUI programs.

	
The menu (see The Menu) is used to start actions.

	
The main toolbar (see The “Main” Toolbar) provides quick access to
frequently used items from the menu.

	
The filter toolbar (see The “Filter” Toolbar) allows users to
set display filters to filter which packets are displayed (see
Filtering Packets While Viewing).

	
The packet list pane (see The “Packet List” Pane) displays a summary
of each packet captured. By clicking on packets in this pane you control what is
displayed in the other two panes.

	
The packet details pane (see The “Packet Details” Pane) displays the
packet selected in the packet list pane in more detail.

	
The packet bytes pane (see The “Packet Bytes” Pane) displays the
data from the packet selected in the packet list pane, and highlights the field
selected in the packet details pane.

	
The packet diagram pane (see The “Packet Diagram” Pane) displays the
packet selected in the packet list as a textbook-style diagram.

	
The statusbar (see The Statusbar) shows some detailed
information about the current program state and the captured data.

The layout of the main window can be customized by changing preference settings.
See Preferences for details.

Main Window Navigation

 Packet list and detail navigation can be done entirely from the keyboard.
Keyboard Navigation shows a list of keystrokes that will let you quickly move around
a capture file. See Go menu items for additional navigation keystrokes.

Table 2. Keyboard Navigation

	Accelerator
	Description

	Tab or Shift+Tab

	Move between screen elements, e.g., from the toolbars to the packet list to the packet detail.

	↓

	Move to the next packet or detail item.

	↑

	Move to the previous packet or detail item.

	Ctrl+↓ or F8

	Move to the next packet, even if the packet list isn’t focused.

	Ctrl+↑ or F7

	Move to the previous packet, even if the packet list isn’t focused.

	Ctrl+.

	Move to the next packet of the conversation (TCP, UDP or IP).

	Ctrl+,

	Move to the previous packet of the conversation (TCP, UDP or IP).

	Alt+→ or Option+→ (macOS)

	Move to the next packet in the selection history.

	Alt+← or Option+← (macOS)

	Move to the previous packet in the selection history.

	←

	In the packet detail, closes the selected tree item. If it’s already closed, jumps to the parent node.

	→

	In the packet detail, opens the selected tree item.

	Shift+→

	In the packet detail, opens the selected tree item and all of its subtrees.

	Ctrl+→

	In the packet detail, opens all tree items.

	Ctrl+←

	In the packet detail, closes all tree items.

	Backspace

	In the packet detail, jumps to the parent node.

	Return or Enter

	In the packet detail, toggles the selected tree item.

Help › About Wireshark › Keyboard Shortcuts will show a list of all shortcuts
in the main window. Additionally, typing anywhere in the main window will start
filling in a display filter.

The Menu

 Wireshark’s main menu is located either at the top of the main window (Windows,
Linux) or at the top of your main screen (macOS). An example is shown in
The Menu.

Some menu items will be disabled (greyed out) if the corresponding feature isn’t
available. For example, you cannot save a capture file if you haven’t captured
or loaded any packets.

[image: ws menu]

Figure 3. The Menu

The main menu contains the following items:

	
File

	
This menu contains items to open and merge capture files, save, print, or export
capture files in whole or in part, and to quit the Wireshark application. See
The “File” Menu.

	
Edit

	
This menu contains items to find a packet, time reference or mark one or more
packets, handle configuration profiles, and set your preferences; (cut, copy,
and paste are not presently implemented). See The “Edit” Menu.

	
View

	
This menu controls the display of the captured data, including colorization of
packets, zooming the font, showing a packet in a separate window, expanding and
collapsing trees in packet details, …​. See The “View” Menu.

	
Go

	
This menu contains items to go to a specific packet. See The “Go” Menu.

	
Capture

	
This menu allows you to start and stop captures and to edit capture filters. See
The “Capture” Menu.

	
Analyze

	
This menu contains items to manipulate display filters, enable or disable the
dissection of protocols, configure user specified decodes and follow a TCP
stream. See The “Analyze” Menu.

	
Statistics

	
This menu contains items to display various statistic windows, including a
summary of the packets that have been captured, display protocol hierarchy
statistics and much more. See The “Statistics” Menu.

	
Telephony

	
This menu contains items to display various telephony related statistic windows,
including a media analysis, flow diagrams, display protocol hierarchy statistics
and much more. See The “Telephony” Menu.

	
Wireless

	
This menu contains items to display Bluetooth and IEEE 802.11 wireless statistics.

	
Tools

	
This menu contains various tools available in Wireshark, such as creating
Firewall ACL Rules. See The “Tools” Menu.

	
Help

	
This menu contains items to help the user, e.g., access to some basic help,
manual pages of the various command line tools, online access to some of the
webpages, and the usual about dialog. See The “Help” Menu.

Each of these menu items is described in more detail in the sections that follow.

Shortcuts make life easier

Most common menu items have keyboard shortcuts. For example, you can
press the Control and the K keys together to open the
“Capture Options” dialog.

The “File” Menu

 The Wireshark file menu contains the fields shown in File menu items.

[image: ws file menu]

Figure 4. The “File” Menu

Table 3. File menu items

	Menu Item
	Accelerator
	Description

	Open…​

	Ctrl+O

	This shows the file open dialog box that allows you to load a
capture file for viewing. It is discussed in more detail in The “Open Capture File” Dialog Box.

	Open Recent

	
	This lets you open recently opened capture files.
Clicking on one of the submenu items will open the corresponding capture file
directly.

	Merge…​

	
	This menu item lets you merge a capture file into the currently loaded one. It
is discussed in more detail in Merging Capture Files.

	Import from Hex Dump…​

	
	This menu item brings up the import file dialog box that allows you to import a
text file containing a hex dump into a new temporary capture. It is discussed in
more detail in Import Hex Dump.

	Close

	Ctrl+W

	This menu item closes the current capture. If you haven’t saved the capture, you
will be asked to do so first (this can be disabled by a preference setting).

	Save

	Ctrl+S

	This menu item saves the current capture. If you have not set a default capture
file name (perhaps with the -w <capfile> option), Wireshark pops up the
Save Capture File As dialog box (which is discussed further in The “Save Capture File As” Dialog Box).
If you have already saved the current capture, this menu item will be greyed
out.
You cannot save a live capture while the capture is in progress. You must
stop the capture in order to save.

	Save As…​

	Shift+Ctrl+S

	This menu item allows you to save the current capture file to whatever file you
would like. It pops up the Save Capture File As dialog box (which is discussed
further in The “Save Capture File As” Dialog Box).

	File Set › List Files

	
	This menu item allows you to show a list of files in a file set. It pops up the
Wireshark List File Set dialog box (which is discussed further in
File Sets).

	File Set › Next File

	
	If the currently loaded file is part of a file set, jump to the next file in the
set. If it isn’t part of a file set or just the last file in that set, this item
is greyed out.

	File Set › Previous File

	
	If the currently loaded file is part of a file set, jump to the previous file in
the set. If it isn’t part of a file set or just the first file in that set, this
item is greyed out.

	Export Specified Packets…​

	
	This menu item allows you to export all (or some) of the packets in the capture
file to file. It pops up the Wireshark Export dialog box (which is discussed
further in Exporting Data).

	Export Packet Dissections…​

	Ctrl+H

	These menu items allow you to export the currently selected bytes in the packet
bytes pane to a text file in a number of formats including plain, CSV,
and XML. It is discussed further in The “Export Selected Packet Bytes” Dialog Box.

	Export Objects

	
	These menu items allow you to export captured DICOM, FTP-DATA, HTTP, IMF, SMB,
or TFTP objects into local files. It pops up a corresponding object list
(which is discussed further in The “Export Objects” Dialog Box)

	Print…​

	Ctrl+P

	This menu item allows you to print all (or some) of the packets in the capture
file. It pops up the Wireshark Print dialog box (which is discussed further in
Printing Packets).

	Quit

	Ctrl+Q

	This menu item allows you to quit from Wireshark. Wireshark will ask to save
your capture file if you haven’t previously saved it (this can be disabled by a
preference setting).

The “Edit” Menu

 The Wireshark Edit menu contains the fields shown in Edit menu items.

[image: ws edit menu]

Figure 5. The “Edit” Menu

Table 4. Edit menu items

	Menu Item
	Accelerator
	Description

	Copy

	
	These menu items will copy the packet list, packet detail, or properties of
the currently selected packet to the clipboard.

	Find Packet…​

	Ctrl+F

	This menu item brings up a toolbar that allows you to find a packet by many
criteria. There is further information on finding packets in
Finding Packets.

	Find Next

	Ctrl+N

	This menu item tries to find the next packet matching the settings from “Find
Packet…​”.

	Find Previous

	Ctrl+B

	This menu item tries to find the previous packet matching the settings from
“Find Packet…​”.

	Mark/Unmark Selected

	Ctrl+M

	This menu item marks the currently selected packet. See
Marking Packets for details.

	Mark All Displayed Packets

	Ctrl+Shift+M

	This menu item marks all displayed packets.

	Unmark All Displayed Packets

	Ctrl+Alt+M

	This menu item unmarks all displayed packets.

	Next Mark

	Ctrl+Shift+N

	Find the next marked packet.

	Previous Mark

	Ctrl+Shift+B

	Find the previous marked packet.

	Ignore/Unignore Selected

	Ctrl+D

	This menu item marks the currently selected packet as ignored. See
Ignoring Packets for details.

	Ignore All Displayed

	Ctrl+Shift+D

	This menu item marks all displayed packets as ignored.

	Unignore All Displayed

	Ctrl+Alt+D

	This menu item unmarks all ignored packets.

	Set/Unset Time Reference

	Ctrl+T

	This menu item set a time reference on the currently selected packet. See
Packet Time Referencing for more information about the time
referenced packets.

	Unset All Time References

	Ctrl+Alt+T

	This menu item removes all time references on the packets.

	Next Time Reference

	Ctrl+Alt+N

	This menu item tries to find the next time referenced packet.

	Previous Time Reference

	Ctrl+Alt+B

	This menu item tries to find the previous time referenced packet.

	Time Shift…​

	Ctrl+Shift+T

	Opens the “Time Shift” dialog, which allows you to adjust the timestamps
of some or all packets.

	Packet Comment…​

	Ctrl+Alt+C

	Opens the “Packet Comment” dialog, which lets you add a comment to a
single packet. Note that the ability to save packet comments depends on
your file format. E.g., pcapng supports comments, pcap does not.

	Delete All Packet Comments

	
	This will delete all comments from all packets. Note that the ability to save
capture comments depends on your file format. E.g., pcapng supports
comments, pcap does not.

	Inject TLS Secrets

	
	Embeds the used TLS decryption secrets into the capture file, which lets
TLS be decrypted without having the separate keylog file.
Note that the ability to save decryption secrets depends on your file
format. E.g., pcapng supports Decryption Secrets Blocks, pcap does not.

	Discard All Secrets

	
	This will discard all embedded decryption secrets from the capture file.
Note that the ability to save decryption secrets depends on your file
format. E.g., pcapng supports Decryption Secrets Blocks, pcap does not.

	Configuration Profiles…​

	Ctrl+Shift+A

	This menu item brings up a dialog box for handling configuration profiles. More
detail is provided in Configuration Profiles.

	Preferences…​

	Ctrl+Shift+P or Cmd+, (macOS)

	This menu item brings up a dialog box that allows you to set preferences for
many parameters that control Wireshark. You can also save your preferences so
Wireshark will use them the next time you start it. More detail is provided in
Preferences.

The “View” Menu

 The Wireshark View menu contains the fields shown in View menu items.

[image: ws view menu]

Figure 6. The “View” Menu

Table 5. View menu items

	Menu Item
	Accelerator
	Description

	Main Toolbar

	
	This menu item hides or shows the main toolbar, see The “Main” Toolbar.

	Filter Toolbar

	
	This menu item hides or shows the filter toolbar, see The “Filter” Toolbar.

	Wireless Toolbar

	
	This menu item hides or shows the wireless toolbar. May not be present on some platforms.

	Statusbar

	
	This menu item hides or shows the statusbar, see The Statusbar.

	Packet List

	
	This menu item hides or shows the packet list pane, see The “Packet List” Pane.

	Packet Details

	
	This menu item hides or shows the packet details pane, see The “Packet Details” Pane.

	Packet Bytes

	
	This menu item hides or shows the packet bytes pane, see The “Packet Bytes” Pane.

	Packet Diagram

	
	This menu item hides or shows the packet diagram pane. See The “Packet Diagram” Pane.

	Time Display Format › Date and Time of Day: 1970-01-01 01:02:03.123456

	
	Selecting this tells Wireshark to display the time stamps in date and time of day format, see Time Display Formats And Time References.
The fields “Time of Day”, “Date and Time of Day”, “Seconds Since First
Captured Packet”, “Seconds Since Previous Captured Packet” and “Seconds
Since Previous Displayed Packet” are mutually exclusive.

	Time Display Format › Time of Day: 01:02:03.123456

	
	Selecting this tells Wireshark to display time stamps in time of day format, see Time Display Formats And Time References.

	Time Display Format › Seconds Since Epoch (1970-01-01): 1234567890.123456

	
	Selecting this tells Wireshark to display time stamps in seconds since 1970-01-01 00:00:00, see Time Display Formats And Time References.

	Time Display Format › Seconds Since First Captured Packet: 123.123456

	
	Selecting this tells Wireshark to display time stamps in seconds since first captured packet format, see Time Display Formats And Time References.

	Time Display Format › Seconds Since Previous Captured Packet: 1.123456

	
	Selecting this tells Wireshark to display time stamps in seconds since previous captured packet format, see Time Display Formats And Time References.

	Time Display Format › Seconds Since Previous Displayed Packet: 1.123456

	
	Selecting this tells Wireshark to display time stamps in seconds since previous displayed packet format, see Time Display Formats And Time References.

	Time Display Format › Automatic (File Format Precision)

	
	Selecting this tells Wireshark to display time stamps with the precision given by the capture file format used, see Time Display Formats And Time References.
The fields “Automatic”, “Seconds” and “…​seconds” are mutually exclusive.

	Time Display Format › Seconds: 0

	
	Selecting this tells Wireshark to display time stamps with a precision of one second, see Time Display Formats And Time References.

	Time Display Format › …​seconds: 0…​.

	
	Selecting this tells Wireshark to display time stamps with a precision of one second, decisecond, centisecond, millisecond, microsecond or nanosecond, see Time Display Formats And Time References.

	Time Display Format › Display Seconds with hours and minutes

	
	Selecting this tells Wireshark to display time stamps in seconds, with hours and minutes.

	Name Resolution › Edit Resolved Name

	
	This item allows you to manually enter names to resolve IP addresses in the current packet, see Name Resolution.

	Name Resolution › Enable for MAC Layer

	
	This item allows you to control whether or not Wireshark translates MAC addresses into names, see Name Resolution.

	Name Resolution › Enable for Network Layer

	
	This item allows you to control whether or not Wireshark translates network addresses into names, see Name Resolution.

	Name Resolution › Enable for Transport Layer

	
	This item allows you to control whether or not Wireshark translates transport addresses into names, see Name Resolution.

	Zoom In

	Ctrl++

	Zoom into the packet data (increase the font size).

	Zoom Out

	Ctrl+-

	Zoom out of the packet data (decrease the font size).

	Normal Size

	Ctrl+=

	Set zoom level back to 100% (set font size back to normal).

	Expand Subtrees

	Shift+→

	This menu item expands the currently selected subtree in the packet details tree.

	Collapse Subtrees

	Shift+←

	This menu item collapses the currently selected subtree in the packet details tree.

	Expand All

	Ctrl+→

	Wireshark keeps a list of all the protocol subtrees that are expanded, and uses it to ensure that the correct subtrees are expanded when you display a packet. This menu item expands all subtrees in all packets in the capture.

	Collapse All

	Ctrl+←

	This menu item collapses the tree view of all packets in the capture list.

	Colorize Packet List

	
	This item allows you to control whether or not Wireshark should colorize the packet list.
Enabling colorization will slow down the display of new packets while
capturing or loading capture files.

	Colorize Conversation

	
	This menu item brings up a submenu that allows you to color packets in the packet list pane based on the addresses of the currently selected packet. This makes it easy to distinguish packets belonging to different conversations. Packet colorization.

	Colorize Conversation › Color 1-10

	
	These menu items enable one of the ten temporary color filters based on the currently selected conversation.

	Colorize Conversation › Reset coloring

	
	This menu item clears all temporary coloring rules.

	Colorize Conversation › New Coloring Rule…​

	
	This menu item opens a dialog window in which a new permanent coloring rule can be created based on the currently selected conversation.

	Coloring Rules…​

	
	This menu item brings up a dialog box that allows you to color packets in the packet list pane according to filter expressions you choose. It can be very useful for spotting certain types of packets, see Packet colorization.

	Resize All Columns

	Shift+Ctrl+R

	Resize all column widths so the content will fit into it.
Resizing may take a significant amount of time, especially if a large capture file is loaded.

	Internals

	
	Information about various internal data structures. See Internals menu items below for more information.

	Show Packet in New Window

	
	Shows the selected packet in a separate window. The separate window
shows only the packet details and bytes of that packet, and will
continue to do so even if another packet is selected in the main window.
See Viewing a packet in a separate window for details.

	Redissect Packets

	
	This menu item redissects the current packets. This can be useful if name resolution or decryption information has changed.

	Reload as File Format/Capture

	Shift+Ctrl+F

	This menu item allows you to switch between viewing the list of frames contained in the current capture file (normal mode) and viewing its internal structure, if supported for the current file type.

	Reload

	Ctrl+R

	This menu item allows you to reload the current capture file.

Table 6. Internals menu items

	Menu Item
	Description

	Conversation Hash Tables

	Shows the tuples (address and port combinations) used to identify each conversation.

	Dissector Tables

	Shows tables of subdissector relationships.

	Supported Protocols

	Displays supported protocols and protocol fields.

The “Go” Menu

 The Wireshark Go menu contains the fields shown in Go menu items.

[image: ws go menu]

Figure 7. The “Go” Menu

Table 7. Go menu items

	Menu Item
	Accelerator
	Description

	Back

	Alt+←

	Jump to the recently visited packet in the packet history, much like the page history in a web browser.

	Forward

	Alt+→

	Jump to the next visited packet in the packet history, much like the page history in a web browser.

	Go to Packet…​

	Ctrl+G

	Bring up a window frame that allows you to specify a packet number, and then goes to that packet. See Go To A Specific Packet for details.

	Go to Corresponding Packet

	
	Go to the corresponding packet of the currently selected protocol field (e.g., the reply
corresponding to a request packet, or vice versa). If the selected field doesn’t correspond to a packet, this item is greyed out.

	Previous Packet

	Ctrl+↑

	Move to the previous packet in the list. This can be used to move to the previous packet even if the packet list doesn’t have keyboard focus.

	Next Packet

	Ctrl+↓

	Move to the next packet in the list. This can be used to move to the next packet even if the packet list doesn’t have keyboard focus.

	First Packet

	Ctrl+Home

	Jump to the first packet of the capture file.

	Last Packet

	Ctrl+End

	Jump to the last packet of the capture file.

	Previous Packet In Conversation

	Ctrl+,

	Move to the previous packet in the current conversation. This can be used to move to the previous packet even if the packet list doesn’t have keyboard focus.

	Next Packet In Conversation

	Ctrl+.

	Move to the next packet in the current conversation. This can be used to move to the next packet even if the packet list doesn’t have keyboard focus.

	Auto Scroll in Live Capture

	
	This item allows you to specify that Wireshark should scroll the packet list pane as new packets come in, so you are always looking at the last packet. If you do not specify this, Wireshark simply adds new packets onto the end of the list, but does not scroll the packet list pane.

The “Capture” Menu

 The Wireshark Capture menu contains the fields shown in Capture menu items.

[image: ws capture menu]

Figure 8. The “Capture” Menu

Table 8. Capture menu items

	Menu Item
	Accelerator
	Description

	Options…​

	Ctrl+K

	Shows the Capture Options dialog box, which allows you to configure
interfaces and capture options.
See The “Capture Options” Dialog Box.

	Start

	Ctrl+E

	Immediately starts capturing packets with the same settings as the last
time.

	Stop

	Ctrl+E

	Stops the currently running capture. See Stop the running capture.

	Restart

	Ctrl+R

	Stops the currently running capture and starts it again with the same
options.

	Capture Filters…​

	
	Shows a dialog box that allows you to create and edit capture filters.
You can name filters and save them for future use.
See Defining And Saving Filters.

	Refresh Interfaces

	F5

	Clear and recreate the interface list.

The “Analyze” Menu

 The Wireshark Analyze menu contains the fields shown in Analyze menu items.

[image: ws analyze menu]

Figure 9. The “Analyze” Menu

Table 9. Analyze menu items

	Menu Item
	Accelerator
	Description

	Display Filters…​

	
	Displays a dialog box that allows you to create and edit display
filters. You can name filters, and you can save them for future use.
See Defining And Saving Filters.

	Display Filter Macros…​

	
	Shows a dialog box that allows you to create and edit display filter
macros. You can name filter macros, and you can save them for future
use.
See Defining And Saving Filter Macros.

	Display Filter Expression…​

	
	Shows a dialog box that allows you to build a display filter expression
to apply. This shows possible fields and their applicable relations and
values, and allows you to search by name and description.
See The “Display Filter Expression” Dialog Box.

	Apply as Column

	Shift+Ctrl+I

	Adds the selected protocol item in the packet details pane as a column
to the packet list.

	Apply as Filter

	
	Change the current display filter and apply it immediately. Depending on
the chosen menu item, the current display filter string will be replaced
or appended to by the selected protocol field in the packet details
pane.

	Prepare as Filter

	
	Change the current display filter but won’t apply it. Depending on the
chosen menu item, the current display filter string will be replaced or
appended to by the selected protocol field in the packet details pane.

	Conversation Filter

	
	Apply a conversation filter for various protocols.

	Enabled Protocols…​

	Shift+Ctrl+E

	Enable or disable various protocol dissectors. See The “Enabled Protocols” dialog box.

	Decode As…​

	
	Decode certain packets as a particular protocol. See User Specified Decodes.

	SCTP

	
	Allows you to analyze and prepare a filter for this SCTP association.
See SCTP Windows.

	Follow

	
	Opens a sub-menu with options of various types of protocol streams
to follow. The entries for protocols which aren’t found in the
currently selected packet will be disabled.
See Following Protocol Streams.

	Show Packet Bytes

	
	Open a window allowing for decoding and reformatting packet bytes.
You can do actions like Base64 decode, decompress, interpret as
a different character encoding, interpret bytes as an image format,
and save, print, or copy to the clipboard the results.
See Show Packet Bytes for more information.

	Expert Info

	
	Open a window showing expert information found in the capture.
Some protocol dissectors add packet detail items for notable or unusual
behavior, such as invalid checksums or retransmissions.
Those items are shown here.
See Expert Information for more information.
The amount of information will vary depend on the protocol

The “Statistics” Menu

 The Wireshark Statistics menu contains the fields shown in Statistics menu items.

[image: ws statistics menu]

Figure 10. The “Statistics” Menu

Each menu item brings up a new window showing specific statistics.

Table 10. Statistics menu items

	Menu Item
	Accelerator
	Description

	Capture File Properties

	
	Show information about the capture file, see The “Capture File Properties” Dialog.

	Resolved Addresses

	
	See Resolved Addresses

	Protocol Hierarchy

	
	Display a hierarchical tree of protocol statistics, see The “Protocol Hierarchy” Window.

	Conversations

	
	Display a list of conversations (traffic between two endpoints), see The “Conversations” Window.

	Endpoints

	
	Display a list of endpoints (traffic to/from an address), see The “Endpoints” Window.

	Packet Lengths

	
	See Packet Lengths

	I/O Graphs

	
	Display user specified graphs (e.g., the number of packets in the course of time), see The “I/O Graphs” Window.

	Plots

	
	Plot display filter field values over time, see The “Plots” Window.

	Service Response Time

	
	Display the time between a request and the corresponding response, see Service Response Time.

	DHCP (BOOTP)

	
	See DHCP (BOOTP) Statistics

	NetPerfMeter

	
	See NetPerfMeter Statistics

	ONC-RPC Programs

	
	See ONC-RPC Programs

	29West

	
	See 29West

	ANCP

	
	See ANCP

	BACnet

	
	See BACnet

	Collectd

	
	See Collectd

	DNS

	
	See DNS

	Flow Graph

	
	See Flow Graph

	HART-IP

	
	See HART-IP

	HPFEEDS

	
	See HPFEEDS

	HTTP

	
	HTTP request/response statistics, see HTTP Statistics

	HTTP2

	
	See HTTP2

	Sametime

	
	See Sametime

	TCP Stream Graphs

	
	See TCP Stream Graphs

	UDP Multicast Streams

	
	See UDP Multicast Streams

	Reliable Server Pooling (RSerPool)

	
	See Reliable Server Pooling (RSerPool)

	F5

	
	See F5

	IPv4 Statistics

	
	See IPv4 Statistics

	IPv6 Statistics

	
	See IPv6 Statistics

The “Telephony” Menu

 The Wireshark Telephony menu contains the fields shown in Telephony menu items.

[image: ws telephony menu]

Figure 11. The “Telephony” Menu

Each menu item shows specific telephony related statistics.

Table 11. Telephony menu items

	Menu Item
	Accelerator
	Description

	VoIP Calls…​

	
	See VoIP Calls Window

	ANSI

	
	See ANSI

	GSM

	
	See GSM Windows

	IAX2 Stream Analysis

	
	See IAX2 Stream Analysis Window

	ISUP Messages

	
	See ISUP Messages Window

	LTE

	
	See 3GPP Uu

	MTP3

	
	See MTP3 Windows

	Osmux

	
	See Osmux Windows

	RTP

	
	See RTP Streams Window and RTP Stream Analysis Window

	RTSP

	
	See RTSP Window

	SCTP

	
	See SCTP Windows

	SMPP Operations

	
	See SMPP Operations Window

	UCP Messages

	
	See UCP Messages Window

	F1AP Messages

	
	See F1AP Messages Window

	NGAP Messages

	
	See NGAP Messages Window

	E2AP Messages

	
	See E2AP Messages Window

	H.225

	
	See H.225 Window

	SIP Flows

	
	See SIP Flows Window

	SIP Statistics

	
	See SIP Statistics Window

	WAP-WSP Packet Counter

	
	See WAP-WSP Packet Counter Window

The “Wireless” Menu

 The Wireless menu lets you analyze Bluetooth and IEEE 802.11 wireless LAN activity as shown in The “Wireless” Menu.

[image: ws wireless menu]

Figure 12. The “Wireless” Menu

Each menu item shows specific Bluetooth and IEEE 802.11 statistics.

Table 12. Wireless menu items

	Menu Item
	Accelerator
	Description

	Bluetooth ATT Server Attributes

	
	See Bluetooth ATT Server Attributes

	Bluetooth Devices

	
	See Bluetooth Devices

	Bluetooth HCI Summary

	
	See Bluetooth HCI Summary

	WLAN Traffic

	
	See WLAN Traffic

The “Tools” Menu

 The Wireshark Tools menu contains the fields shown in Tools menu items.

[image: ws tools menu]

Figure 13. The “Tools” Menu

Table 13. Tools menu items

	Menu Item
	Accelerator
	Description

	Firewall ACL Rules

	
	This allows you to create command-line ACL rules for many different firewall products, including Cisco IOS, Linux Netfilter (iptables), OpenBSD pf and Windows Firewall (via netsh). Rules for MAC addresses, IPv4 addresses, TCP and UDP ports, and IPv4+port combinations are supported.
It is assumed that the rules will be applied to an outside interface.
Menu item is greyed out unless one (and only one) frame is selected in the packet list.

	Credentials

	
	This allows you to extract credentials from the current capture file. Some of the dissectors (ftp, http, imap, pop, smtp) have been instrumented to provide the module with usernames and passwords and more will be instrumented in the future. The window dialog provides you the packet number where the credentials have been found, the protocol that provided them, the username and protocol specific information.

	MAC Address Blocks

	
	This allows viewing the IEEE MAC address registry data that Wireshark uses to resolve MAC address blocks to vendor names. The table can be searched by address prefix or vendor name.

	TLS Keylog Launcher

	
	This can launch an application such as a web browser or a terminal window with the SSLKEYLOGFILE environment variable set to the same value as the TLS secret log file. Note that you will probably have to quit your existing web browser session in order to have it run under a fresh environment.

	Lua Console

	
	This option allows you to work with the Lua interpreter optionally built into Wireshark, to inspect Lua internals and evaluate code.
See “Lua Support in Wireshark” in the Wireshark Developer’s Guide.

The “Help” Menu

 The Wireshark Help menu contains the fields shown in Help menu items.

[image: ws help menu]

Figure 14. The “Help” Menu

Table 14. Help menu items

	Menu Item
	Accelerator
	Description

	User’s Guide

	F1

	This menu item brings up the Wireshark User’s Guide you’re reading right now.

	Manual Pages › …​

	
	This menu item starts a Web browser showing one of the locally installed html manual pages.

	Website

	
	This menu item starts a Web browser showing the webpage from: https://www.wireshark.org/.

	FAQs

	
	This menu item starts a Web browser showing various FAQs.

	Downloads

	
	This menu item starts a Web browser showing the downloads from: https://www.wireshark.org/download.html.

	Wiki

	
	This menu item starts a Web browser showing the front page from: https://wiki.wireshark.org/.

	Sample Captures

	
	This menu item starts a Web browser showing the sample captures from: https://wiki.wireshark.org/SampleCaptures.

	About Wireshark

	
	This menu item brings up an information window that provides various detailed information items on Wireshark, such as how it’s built, the plugins loaded, the used folders, …​

Opening a Web browser might be unsupported in your version of Wireshark. If this
is the case the corresponding menu items will be hidden.

If calling a Web browser fails on your machine, nothing happens, or the browser
starts but no page is shown, have a look at the web browser setting in the
preferences dialog.

The “Main” Toolbar

 The main toolbar provides quick access to frequently used items
from the menu. This toolbar cannot be customized by the user, but it can
be hidden using the View menu if the space on the screen is needed to
show more packet data.

Items in the toolbar will be enabled or disabled (greyed out) similar to
their corresponding menu items. For example, in the image below shows
the main window toolbar after a file has been opened. Various
file-related buttons are enabled, but the stop capture button is
disabled because a capture is not in progress.

[image: ws main toolbar]

Figure 15. The “Main” toolbar

Table 15. Main toolbar items

	Toolbar Icon
	Toolbar Item
	Menu Item
	Description

	[image: x capture start]

	Start

	Capture › Start

	Starts capturing packets with the same options as the last capture or the default options if none were set (Start Capturing).

	[image: x capture stop]

	Stop

	Capture › Stop

	Stops the currently running capture (Start Capturing).

	[image: x capture restart]

	Restart

	Capture › Restart

	Restarts the current capture session.

	[image: x capture options]

	Options…​

	Capture › Options…​

	Opens the “Capture Options” dialog box. See Start Capturing for details.

	[image: document open]

	Open…​

	File › Open…​

	Opens the file open dialog box, which allows you to load a capture file for viewing. It is discussed in more detail in The “Open Capture File” Dialog Box.

	[image: x capture file save]

	Save As…​

	File › Save As…​

	Save the current capture file to whatever file you would like. See The “Save Capture File As” Dialog Box for details. If you currently have a temporary capture file open the “Save” icon will be shown instead.

	[image: x capture file close]

	Close

	File › Close

	Closes the current capture. If you have not saved the capture, you will be asked to save it first.

	[image: x capture file reload]

	Reload

	View › Reload

	Reloads the current capture file.

	[image: edit find]

	Find Packet…​

	Edit › Find Packet…​

	Find a packet based on different criteria. See Finding Packets for details.

	[image: go previous]

	Go Back

	Go › Go Back

	Jump back in the packet history. Hold down the Alt key (Option on macOS) to go back in the selection history.

	[image: go next]

	Go Forward

	Go › Go Forward

	Jump forward in the packet history. Hold down the Alt key (Option on macOS) to go forward in the selection history.

	[image: go jump]

	Go to Packet…​

	Go › Go to Packet…​

	Go to a specific packet.

	[image: go first]

	Go To First Packet

	Go › First Packet

	Jump to the first packet of the capture file.

	[image: go last]

	Go To Last Packet

	Go › Last Packet

	Jump to the last packet of the capture file.

	[image: x stay last]

	Auto Scroll in Live Capture

	View › Auto Scroll in Live Capture

	Auto scroll packet list while doing a live capture (or not).

	[image: x colorize packets]

	Colorize

	View › Colorize Packet List

	Colorize the packet list (or not).

	[image: zoom in]

	Zoom In

	View › Zoom In

	Zoom into the packet data (increase the font size).

	[image: zoom out]

	Zoom Out

	View › Zoom Out

	Zoom out of the packet data (decrease the font size).

	[image: zoom original]

	Normal Size

	View › Normal Size

	Set zoom level back to 100%.

	[image: x resize columns]

	Resize Columns

	View › Resize Columns

	Resize columns, so the content fits into them.

	[image: x reset layout 2]

	Reset Layout

	View › Reset Layout

	Reset layout to default size.

The “Filter” Toolbar

 The filter toolbar lets you quickly edit and apply display filters. More
information on display filters is available in Filtering Packets While Viewing.

[image: ws filter toolbar]

Figure 16. The “Filter” toolbar

Table 16. Filter toolbar items

	Toolbar Icon
	Name
	Description

	[image: filter toolbar bookmark]

	Bookmarks

	Manage or select saved filters.

	[image: filter toolbar input]

	Filter Input

	The area to enter or edit a display filter string, see Building Display Filter Expressions. A syntax check of your filter string is done while you are typing. The background will turn red if you enter an incomplete or invalid string, and will become green when you enter a valid string.
After you’ve changed something in this field, don’t forget to press the Apply
button (or the Enter/Return key), to apply this filter string to the display.
This field is also where the current applied filter is displayed.

	[image: filter toolbar clear]

	Clear

	Reset the current display filter and clear the edit area.

	[image: filter toolbar apply]

	Apply

	Apply the current value in the edit area as the new display filter.
Applying a display filter on large capture files might take quite a long time.

	[image: filter toolbar recent]

	Recent

	Select from a list of recently applied filters.

	[image: filter toolbar add]

	Add Button

	Add a new filter button.

	Squirrels

	Filter Button

	Filter buttons are handy shortcuts that apply a display filter as soon as you press them.
You can create filter buttons by pressing the + button, right-clicking in the filter button area, or opening the Filter Button section of the Preferences Dialog.
The example shows a filter button with the label “Squirrels”.
If you have lots of buttons you can arrange them into groups by using “//” as a label separator.
For example, if you create buttons named “Not Squirrels // Rabbits” and “Not Squirrels // Capybaras” they will show up in the toolbar under a single button named “Not Squirrels”.

The “Packet List” Pane

 The packet list pane displays all the packets in the current capture file.

[image: ws list pane]

Figure 17. The “Packet List” pane

Each line in the packet list corresponds to one packet in the capture file. If
you select a line in this pane, more details will be displayed in the “Packet
Details” and “Packet Bytes” panes.

While dissecting a packet, Wireshark will place information from the protocol
dissectors into the columns. As higher-level protocols might overwrite
information from lower levels, you will typically see the information from the
highest possible level only.

For example, let’s look at a packet containing TCP inside IP inside an Ethernet
packet. The Ethernet dissector will write its data (such as the Ethernet
addresses), the IP dissector will overwrite this by its own (such as the IP
addresses), the TCP dissector will overwrite the IP information, and so on.

There are many different columns available. You can choose which columns are
displayed in the preferences. See Preferences.

The default columns will show:

	
No. The number of the packet in the capture file. This number won’t
change, even if a display filter is used.

	
Time The timestamp of the packet. The presentation format of this
timestamp can be changed, see Time Display Formats And Time References.

	
Source The address where this packet is coming from.

	
Destination The address where this packet is going to.

	
Protocol The protocol name in a short (perhaps abbreviated) version.

	
Length The length of each packet.

	
Info Additional information about the packet content.

The first column shows how each packet is related to the selected packet. For
example, in the image above the first packet is selected, which is a DNS
request. Wireshark shows a rightward arrow for the request itself, followed by a
leftward arrow for the response in packet 2. Why is there a dashed line? There
are more DNS packets further down that use the same port numbers. Wireshark
treats them as belonging to the same conversation and draws a line connecting
them.

Related packet symbols

	

[image: related first]

	
First packet in a conversation.

	

[image: related current]

	
Part of the selected conversation.

	

[image: related other]

	
Not part of the selected conversation.

	

[image: related last]

	
Last packet in a conversation.

	

[image: related request]

	
Request.

	

[image: related response]

	
Response.

	

[image: related ack]

	
The selected packet acknowledges this packet.

	

[image: related dup ack]

	
The selected packet is a duplicate acknowledgement of this packet.

	

[image: related segment]

	
The selected packet is related to this packet in some other way, e.g., as part
of reassembly.

The packet list has an Intelligent Scrollbar which shows a miniature map of
nearby packets. Each raster line
of the scrollbar corresponds to a single packet, so the number of packets shown
in the map depends on your physical display and the height of the packet list. A
tall packet list on a high-resolution (“Retina”) display will show you quite a
few packets. In the image above the scrollbar shows the status of more than 500
packets along with the 15 shown in the packet list itself.

Right clicking will show a context menu, described in
Pop-up menu of the “Packet List” pane.

The “Packet Details” Pane

 The packet details pane shows the current packet (selected in the “Packet List”
pane) in a more detailed form.

[image: ws details pane]

Figure 18. The “Packet Details” pane

This pane shows the protocols and protocol fields of the packet selected in the
“Packet List” pane. The protocol summary lines (subtree labels) and fields of the
packet are shown in a tree which can be expanded and collapsed.

There is a context menu (right mouse click) available. See details in
Pop-up menu of the “Packet Details” pane.

Some protocol fields have special meanings.

	
Generated fields. Wireshark itself will generate additional protocol
information which isn’t present in the captured data. This information
is enclosed in square brackets (“[” and “]”). Generated information
includes response times, TCP analysis, IP geolocation information, and
checksum validation.

	
Links. If Wireshark detects a relationship to another packet in the capture
file it will generate a link to that packet. Links are underlined and
displayed in blue. If you double-clicked on a link Wireshark will jump to the
corresponding packet.

The “Packet Bytes” Pane

 The packet bytes pane shows the data of the current packet (selected in the
“Packet List” pane) in a hexdump style.

[image: ws bytes pane]

Figure 19. The “Packet Bytes” pane

The “Packet Bytes” pane shows a canonical
hex dump of the packet data. Each line
contains the data offset, sixteen hexadecimal bytes, and sixteen ASCII bytes.
Non-printable bytes are replaced with a period (“.”).

Depending on the packet data, sometimes more than one page is available, e.g.
when Wireshark has reassembled some packets into a single chunk of data. (See
Packet Reassembly for details). In this case you can see each data
source by clicking its corresponding tab at the bottom of the pane.

The default mode for viewing will highlight the bytes for a field where the
mouse pointer is hovering above. The highlight will follow the mouse cursor
as it moves. If this highlighting is not required or wanted, there are two
methods for deactivating the functionality:

	
Temporary By holding down the Ctrl button while moving the mouse, the
highlighted field will not change

	
Permanently Using the context menu (right mouse click) the hover highlighting
may be activated/deactivated. This setting is stored in the selected profile
recent file.

[image: ws bytes pane tabs]

Figure 20. The “Packet Bytes” pane with tabs

Additional tabs typically contain data reassembled from multiple packets or
decrypted data.

The “Packet Diagram” Pane

 The packet diagram pane shows the current packet (selected in the “Packet List”
pane) as a diagram, similar to ones used in textbooks and IETF RFCs.

[image: ws diagram pane]

Figure 21. The “Packet Diagram” pane

This pane shows the protocols and top-level protocol fields of the packet selected in the “Packet List” pane as a series of diagrams.

There is a context menu (right mouse click) available.
For details see Pop-up menu of the “Packet Diagram” pane.

The Statusbar

 The statusbar displays informational messages.

In general, the left side will show context related information, the middle part
will show information about the current capture file, and the right side will
show the selected configuration profile. Drag the handles between the text areas
to change the size.

[image: ws statusbar empty]

Figure 22. The initial Statusbar

This statusbar is shown while no capture file is loaded, e.g., when Wireshark is started.

[image: ws statusbar loaded]

Figure 23. The Statusbar with a loaded capture file

	
The colorized bullet…​

	
on the left shows the highest expert information level found in the currently loaded capture file.
Hovering the mouse over this icon will show a description of the expert info level, and clicking the icon will bring up the Expert Information dialog box.
For a detailed description of this dialog and each expert level, see Expert Information.

	
The edit icon…​

	
on the left side lets you add a comment to the capture file using the Capture File Properties dialog.

	
The left side…​

	
shows the capture file name by default.
It also shows field information when hovering over and selecting items in the packet detail and packet bytes panes, as well as general notifications.

	
The middle…​

	
shows the current number of packets in the capture file.
The following values are displayed:

	
Packets

	
The number of captured packets.

	
Displayed

	
The number of packets currently being displayed.

	
Marked

	
The number of marked packets. Only displayed if you marked any packets.

	
Dropped

	
The number of dropped packets Only displayed if Wireshark was unable to capture all packets.

	
Ignored

	
The number of ignored packets Only displayed if you ignored any packets.

	
The right side…​

	
shows the selected configuration profile.
Clicking on this part of the statusbar will bring up a menu with all available configuration profiles, and selecting from this list will change the configuration profile.

[image: ws statusbar profile]

Figure 24. The Statusbar with a configuration profile menu

For a detailed description of configuration profiles, see Configuration Profiles.

[image: ws statusbar selected]

Figure 25. The Statusbar with a selected protocol field

This is displayed if you have selected a protocol field in the “Packet Details” pane.

The value between the parentheses (in this example “ipv6.src”) is the display filter field for the selected item.
You can become more familiar with display filter fields by selecting different packet detail items.

[image: ws statusbar filter]

Figure 26. The Statusbar with a display filter message

This is displayed if you are trying to use a display filter which may have unexpected results.

Capturing Live Network Data

Introduction

 Capturing live network data is one of the major features of Wireshark.

The Wireshark capture engine provides the following features:

	
Capture from different kinds of network hardware such as Ethernet or 802.11.

	
Simultaneously capture from multiple network interfaces.

	
Stop the capture on different triggers such as the amount of captured data,
elapsed time, or the number of packets.

	
Simultaneously show decoded packets while Wireshark is capturing.

	
Filter packets, reducing the amount of data to be captured. See
Filtering while capturing.

	
Save packets in multiple files while doing a long-term capture, optionally
rotating through a fixed number of files (a “ringbuffer”). See
Capture files and file modes.

The capture engine still lacks the following features:

	
Stop capturing (or perform some other action) depending on the captured data.

Prerequisites

 Setting up Wireshark to capture packets for the first time can be
tricky. A comprehensive guide “How To setup a Capture” is available at
https://wiki.wireshark.org/CaptureSetup.

Here are some common pitfalls:

	
You may need special privileges to start a live capture.

	
You need to choose the right network interface to capture packet data from.

	
You need to capture at the right place in the network to see the traffic you
want to see.

If you have any problems setting up your capture environment, you should have a
look at the guide mentioned above.

Start Capturing

 The following methods can be used to start capturing packets with Wireshark:

	
You can double-click on an interface in the welcome screen.

	
You can select an interface in the welcome screen, then select Capture › Start or click the first toolbar button.

	
You can get more detailed information about available interfaces using The “Capture Options” Dialog Box (Capture › Options…​).

	
If you already know the name of the capture interface you can start Wireshark from the command line:

 $ wireshark -i eth0 -k

This will start Wireshark capturing on interface eth0. More details can be found at Start Wireshark from the command line.

The “Capture” Section Of The Welcome Screen

 When you open Wireshark without starting a capture or opening a capture file it will display the “Welcome Screen,” which lists any recently opened capture files and available capture interfaces.
Network activity for each interface will be shown in a sparkline next to the interface name.
It is possible to select more than one interface and capture from them simultaneously.

[image: ws capture interfaces main win32]

Figure 27. Capture interfaces on Microsoft Windows

[image: ws capture interfaces main macos]

Figure 28. Capture interfaces on macOS

Some interfaces allow or require configuration prior to capture.
This will be indicated by a configuration icon
([image: x capture options])
to the left of the interface name.
Clicking on the icon will show the configuration dialog for that interface.

Hovering over an interface will show any associated IPv4 and IPv6 addresses and its capture filter.

Wireshark isn’t limited to just network interfaces — on most systems you can also capture USB, Bluetooth, and other types of packets.
Note also that an interface might be hidden if it’s inaccessible to Wireshark or if it has been hidden as described in The “Manage Interfaces” Dialog Box.

The “Capture Options” Dialog Box

 When you select Capture › Options…​ (or use the corresponding item in the
main toolbar), Wireshark pops up the “Capture Options” dialog box as shown in
The “Capture Options” input tab.
If you are unsure which options to choose in this dialog box, leaving the defaults settings as they are should work well in many cases.

[image: ws capture options]

Figure 29. The “Capture Options” input tab

The “Input” tab contains the “Interface” table, which shows the following columns:

	
Interface

	
The interface name.
Some interfaces allow or require configuration prior to capture.
This will be indicated by a configuration icon
([image: x capture options])
to the left of the interface name.
Clicking on the icon will show the configuration dialog for that interface.

	
Traffic

	
A sparkline showing network activity over time.

	
Link-layer Header

	
The type of packet captured by this interface.
In some cases it is possible to change this.
See Link-layer header type for more details.

	
Promiscuous

	
Lets you put this interface in promiscuous mode while capturing.
Note that another application might override this setting.

	
Snaplen

	
The snapshot length, or the number of bytes to capture for each packet.
You can set an explicit length if needed, e.g., for performance or privacy reasons.

	
Buffer

	
The size of the kernel buffer that is reserved for capturing packets.
You can increase or decrease this as needed, but the default is usually sufficient.

	
Monitor Mode

	
Lets you capture full, raw 802.11 headers.
Support depends on the interface type, hardware, driver, and OS.
Note that enabling this might disconnect you from your wireless network.

	
Capture Filter

	
The capture filter applied to this interface.
You can edit the filter by double-clicking on it.
See Filtering while capturing for more details about capture filters.

Hovering over an interface or expanding it will show any associated IPv4 and IPv6 addresses.

If “Enable promiscuous mode on all interfaces” is enabled, the individual promiscuous mode settings above will be overridden.

“Capture filter for selected interfaces” can be used to set a filter for more than one interface at the same time.

Manage Interfaces opens the The “Manage Interfaces” dialog box where pipes can be defined, local interfaces scanned or hidden, or remote interfaces added.

Compile Selected BPFs opens The “Compiled Filter Output” dialog box, which shows you the compiled bytecode for your capture filter.
This can help to better understand the capture filter you created.

Linux power user tip

The execution of BPFs can be sped up on Linux by turning on BPF Just In Time compilation by executing

 $ echo 1 >/proc/sys/net/core/bpf_jit_enable

if it is not enabled already. To make the change persistent you can use
sysfsutils.

[image: ws capture options output]

Figure 30. The “Capture Options” output tab

The “Output” tab shows the following information:

	
Capture to a permanent file

	

	
File

	
This field allows you to specify the file name that will be used for the capture file.
It is left blank by default.
If left blank, the capture data will be stored in a temporary file.
See Capture files and file modes for details.
You can also click on the button to the right of this field to browse through the filesystem.

	
Output format

	
Allows you to set the format of the capture file.
pcapng is the default and is more flexible than pcap.
pcapng might be required, e.g., if more than one interface is chosen for capturing.
See https://wiki.wireshark.org/Development/PcapNg for more details on pcapng.

	
Create a new file automatically…​

	
Sets the conditions for switching a new capture file.
A new capture file can be created based on the following conditions:

	
The number of packets in the capture file.

	
The size of the capture file.

	
The duration of the capture file.

	
The wall clock time.

	
Use a ring buffer with

	
Multiple files only.
Form a ring buffer of the capture files with the given number of files.

More details about capture files can be found in Capture files and file modes.

[image: ws capture options options]

Figure 31. The “Capture Options” options tab

The “Options” tab shows the following information:

	
Display Options

	

	
Update list of packets in real-time

	
Updates the packet list pane in real time during capture.
If you do not enable this, Wireshark will not display any packets until you stop the capture.
When you check this, Wireshark captures in a separate process and feeds the captures to the display process.

	
Automatically scroll during live capture

	
Scroll the packet list pane as new packets come in, so you are always looking at the most recent packet.
Automatic scrolling is temporarily disabled when manually scrolling upwards or performing a "Go" action so that the selected packet can be examined.
It will resume upon manually scrolling to the end of the packet list.
If you do not specify this Wireshark adds new packets to the packet list but does not scroll the packet list pane.
This option has no effect if “Update list of packets in real-time” is disabled.

	
Show capture information during capture

	
If this option is enabled, the capture information dialog described in While a Capture is running …​ will be shown while packets are captured.

	
Name Resolution

	

	
Resolve MAC addresses

	
Translate MAC addresses into names.

	
Resolve network names

	
Translate network addresses into names.

	
Resolve transport names

	
Translate transport names (port numbers).

See Name Resolution for more details on each of these options.

	
Stop capture automatically after…​

	
Capturing can be stopped based on the following conditions:

	
The number of packets in the capture file.

	
The number of capture files.

	
The capture file size.

	
The capture file duration.

You can double-click on an interface row in the “Input“ tab or click Start from any tab to commence the capture. You can click Cancel to apply your changes and close the dialog.

The “Manage Interfaces” Dialog Box

[image: ws manage interfaces]

Figure 32. The “Manage Interfaces” dialog box

The “Manage Interfaces” dialog box initially shows the “Local Interfaces” tab, which lets you manage the following:

	
Show

	
Whether or not to show or hide this interface in the welcome screen and the “Capture Options” dialog.

	
Friendly Name

	
A name for the interface that is human readable.

	
Interface Name

	
The device name of the interface.

	
Comment

	
Can be used to add a descriptive comment for the interface.

The “Pipes” tab lets you capture from a named pipe.
To successfully add a pipe, its associated named pipe must have already been created.
Click + and type the name of the pipe including its path.
Alternatively, Browse can be used to locate the pipe.

To remove a pipe from the list of interfaces, select it and press -.

On Microsoft Windows, the “Remote Interfaces” tab lets you capture from an interface on a different machine.
The Remote Packet Capture Protocol service must first be running on the target platform before Wireshark can connect to it.

On Linux or Unix you can capture (and do so more securely) through an SSH tunnel.

To add a new remote capture interface, click + and specify the following:

	
Host

	
The IP address or host name of the target platform where the Remote Packet Capture Protocol service is listening.
The drop-down list contains the hosts that have previously been successfully contacted.
The list can be emptied by choosing “Clear list” from the drop-down list.

	
Port

	
Set the port number where the Remote Packet Capture Protocol service is listening on.
Leave blank to use the default port (2002).

	
Null authentication

	
Select this if you don’t need authentication to take place for a remote capture to be started.
This depends on the target platform.
This is exactly as secure as it appears, i.e., it is not secure at all.

	
Password authentication

	
Lets you specify the username and password required to connect to the Remote Packet Capture Protocol service.

Each interface can optionally be hidden.
In contrast to the local interfaces, they are not saved in the preferences file.

Make sure you have outside access to port 2002 on the target platform.
This is the default port used by the Remote Packet Capture Protocol service.

To remove a host including all its interfaces from the list, select it and click the - button.

The “Compiled Filter Output” Dialog Box

 This figure shows the results of compiling the BPF filter for the selected interfaces.

[image: ws capture options compile selected bpfs]

Figure 33. The “Compiled Filter Output” dialog box

In the list on the left the interface names are listed.
The results of compiling a filter for the selected interface are shown on the right.

Capture files and file modes

 While capturing, the underlying libpcap capturing engine will grab the packets
from the network card and keep the packet data in a (relatively) small kernel
buffer. This data is read by Wireshark and saved into a capture file.

By default, Wireshark saves packets to a temporary file. You can also tell
Wireshark to save to a specific (“permanent”) file and switch to a
different file after a given time has elapsed or a given number of packets
have been captured. These options are controlled in the
“Capture Options” dialog’s “Output” tab.

[image: ws capture options output]

Figure 34. Capture output options

Working with large files (several hundred MB) can be quite slow. If you plan to do
a long-term capture or capturing from a high traffic network, think about using
one of the “Multiple files” options. This will spread the captured packets over
several smaller files which can be much more pleasant to work with.

Using the “Multiple files” option may cut context related information. Wireshark keeps
context information of the loaded packet data, so it can report context related
problems (like a stream error) and keeps information about context related
protocols (e.g., where data is exchanged at the establishing phase and only
referred to in later packets). As it keeps this information only for the loaded
file, using one of the multiple file modes may cut these contexts. If the
establishing phase is saved in one file and the things you would like to see is
in another, you might not see some of the valuable context related information.

Information about the folders used for capture files can be found in
[AppFiles].

Table 17. Capture file mode selected by capture options

	File Name
	“Create a new file…​”
	“Use a ring buffer…​”
	Mode
	Resulting filename(s) used

	-

	-

	-

	Single temporary file

	wireshark_<interface name>XXXXXX.pcap[ng]
(<interface name> is the "friendly name" of the capture interface if available
and the system name if not, when capturing on a single interface, and
"N_interfaces" where N is the number of interfaces, when capturing on
multiple interfaces; XXXXXX is a unique 6 character alphanumeric sequence.)

	foo.cap

	-

	-

	Single named file

	foo.cap

	foo.cap

	x

	-

	Multiple files, continuous

	foo_00001_20250714110102.cap, foo_00002_20250714110318.cap, …​

	foo.cap

	x

	x

	Multiple files, ring buffer

	foo_00001_20250714110102.cap, foo_00002_20250714110318.cap, …​

	
Single temporary file

	
A temporary file will be created and used (this is the default).
After capturing is stopped this file can be saved later under a user specified name.

	
Single named file

	
A single capture file will be used.
Choose this mode if you want to place the new capture file in a specific folder.

	
Multiple files, continuous

	
Like the “Single named file” mode, but a new file is created and used after reaching one of the multiple file switch conditions (one of the “Next file every…​” values).

	
Multiple files, ring buffer

	
Much like “Multiple files continuous”, reaching one of the multiple files switch
conditions (one of the “Next file every …​” values) will switch to the next
file. This will be a newly created file if value of “Ring buffer with n files”
is not reached, otherwise it will replace the oldest of the formerly used files
(thus forming a “ring”).
This mode will limit the maximum disk usage, even for an unlimited amount of
capture input data, only keeping the latest captured data.

Link-layer header type

 In most cases you won’t have to modify link-layer header type. Some exceptions
are as follows:

If you are capturing on an Ethernet device you might be offered a choice of
“Ethernet” or “DOCSIS”. If you are capturing traffic from a Cisco Cable
Modem Termination System that is putting DOCSIS traffic onto the Ethernet to be
captured, select “DOCSIS”, otherwise select “Ethernet”.

If you are capturing on an 802.11 device on some versions of BSD you might be
offered a choice of “Ethernet” or “802.11”. “Ethernet” will cause the
captured packets to have fake (“cooked”) Ethernet headers. “802.11” will
cause them to have full IEEE 802.11 headers. Unless the capture needs to be read
by an application that doesn’t support 802.11 headers you should select
“802.11”.

If you are capturing on an Endace DAG card connected to a synchronous serial
line you might be offered a choice of “PPP over serial” or “Cisco HDLC”. If
the protocol on the serial line is PPP, select “PPP over serial” and if the
protocol on the serial line is Cisco HDLC, select “Cisco HDLC”.

If you are capturing on an Endace DAG card connected to an ATM network you might
be offered a choice of “RFC 1483 IP-over-ATM” or “Sun raw ATM”. If the only
traffic being captured is RFC 1483 LLC-encapsulated IP, or if the capture needs
to be read by an application that doesn’t support SunATM headers, select “RFC
1483 IP-over-ATM”, otherwise select “Sun raw ATM”.

Filtering while capturing

 Wireshark supports limiting the packet capture to packets that match a
capture filter. Wireshark capture filters are written in
libpcap filter language. Below is a brief overview of the libpcap filter
language’s syntax. Complete documentation can be found at
the pcap-filter man page. You can find
many Capture Filter examples at https://wiki.wireshark.org/CaptureFilters.

You enter the capture filter into the “Filter” field of the Wireshark
“Capture Options” dialog box, as shown in The “Capture Options” input tab.

A capture filter takes the form of a series of primitive expressions connected
by conjunctions (and/or) and optionally preceded by not:

 [not] primitive [and|or [not] primitive ...]

An example is shown in A capture filter for telnet that captures traffic to and from a particular host.

Example 1. A capture filter for telnet that captures traffic to and from a particular host

 tcp port 23 and host 10.0.0.5

This example captures telnet traffic to and from the host 10.0.0.5, and shows
how to use two primitives and the and conjunction. Another example is shown
in Capturing all telnet traffic not from 10.0.0.5, and shows how to capture all telnet traffic except that
from 10.0.0.5.

Example 2. Capturing all telnet traffic not from 10.0.0.5

 tcp port 23 and not src host 10.0.0.5

	
A primitive is simply one of the following: [src|dst] host <host>

	
This primitive allows you to filter on a host IP address or name. You can
optionally precede the primitive with the keyword src|dst to specify that you
are only interested in source or destination addresses. If these are not
present, packets where the specified address appears as either the source or the
destination address will be selected.

	
ether [src|dst] host <ehost>

	
This primitive allows you to filter on Ethernet host addresses. You can
optionally include the keyword src|dst between the keywords ether and host
to specify that you are only interested in source or destination addresses. If
these are not present, packets where the specified address appears in either the
source or destination address will be selected.

	
gateway host <host>

	
This primitive allows you to filter on packets that used host as a gateway.
That is, where the Ethernet source or destination was host but neither the
source nor destination IP address was host.

	
[src|dst] net <net> [{mask <mask>}|{len <len>}]

	
This primitive allows you to filter on network numbers. You can optionally
precede this primitive with the keyword src|dst to specify that you are only
interested in a source or destination network. If neither of these are present,
packets will be selected that have the specified network in either the source or
destination address. In addition, you can specify either the netmask or the CIDR
prefix for the network if they are different from your own.

	
[tcp|udp] [src|dst] port <port>

	
This primitive allows you to filter on TCP and UDP port numbers. You can
optionally precede this primitive with the keywords src|dst and tcp|udp
which allow you to specify that you are only interested in source or destination
ports and TCP or UDP packets respectively. The keywords tcp|udp must appear
before src|dst.
If these are not specified, packets will be selected for both the TCP and UDP
protocols and when the specified address appears in either the source or
destination port field.

	
less|greater <length>

	
This primitive allows you to filter on packets whose length was less than or
equal to the specified length, or greater than or equal to the specified length,
respectively.

	
ip|ether proto <protocol>

	
This primitive allows you to filter on the specified protocol at either the
Ethernet layer or the IP layer.

	
ether|ip broadcast|multicast

	
This primitive allows you to filter on either Ethernet or IP broadcasts or
multicasts.

	
<expr> relop <expr>

	
This primitive allows you to create complex filter expressions that select bytes or ranges of bytes in packets.
Please see the pcap-filter man page at https://www.tcpdump.org/manpages/pcap-filter.7.html for more details.

Automatic Remote Traffic Filtering

 If Wireshark is running remotely (using e.g., SSH, an exported X11 window, a
terminal server, …​), the remote content has to be transported over the
network, adding a lot of (usually unimportant) packets to the actually
interesting traffic.

To avoid this, Wireshark tries to figure out if it’s remotely connected (by
looking at some specific environment variables) and automatically creates a
capture filter that matches aspects of the connection.

The following environment variables are analyzed:

	
SSH_CONNECTION (ssh)

	
<remote IP> <remote port> <local IP> <local port>

	
SSH_CLIENT (ssh)

	
<remote IP> <remote port> <local port>

	
REMOTEHOST (tcsh, others?)

	
<remote name>

	
DISPLAY (x11)

	
[remote name]:<display num>

	
SESSIONNAME (terminal server)

	
<remote name>

On Windows it asks the operating system if it’s running in a Remote Desktop Services environment.

While a Capture is running …​

 You might see the following dialog box while a capture is running:

[image: ws capture info]

Figure 35. The “Capture Information” dialog box

This dialog box shows a list of protocols and their activity over time.
It can be enabled via the “capture.show_info” setting in the “Advanced”
preferences.

Stop the running capture

 A running capture session will be stopped in one of the following ways:

	
The Stop Capture button in the “Capture Information” dialog box.

	
The Capture › Stop menu item.

	
The Stop toolbar button.

	
Pressing Ctrl+E.

	
The capture will be automatically stopped if one of the Stop Conditions is
met, e.g., the maximum amount of data was captured.

Restart a running capture

 A running capture session can be restarted with the same capture options as the
last time, this will remove all packets previously captured. This can be useful,
if some uninteresting packets are captured and there’s no need to keep them.

Restart is a convenience function and equivalent to a capture stop following by
an immediate capture start. A restart can be triggered in one of the following
ways:

	
Using the Capture › Restart menu item.

	
Using the Restart toolbar button.

File Input, Output, And Printing

Introduction

 This chapter will describe input and output of capture data.

	
Open capture files in various capture file formats

	
Save and export capture files in various formats

	
Merge capture files together

	
Import text files containing hex dumps of packets

	
Print packets

Open Capture Files

 Wireshark can read in previously saved capture files. To read them, simply
select the File › Open menu or toolbar item. Wireshark will then pop up
the “File Open” dialog box, which is discussed in more detail in The “Open Capture File” Dialog Box.

You can use drag and drop to open files

On most systems you can open a file by simply dragging it in your file manager and dropping it onto Wireshark’s main window.

If you haven’t previously saved the current capture file you will be asked to
do so to prevent data loss. This warning can be disabled in the preferences.

In addition to its native file format (pcapng), Wireshark can read and write
capture files from a large number of other packet capture programs as well. See
Input File Formats for the list of capture formats Wireshark
understands.

The “Open Capture File” Dialog Box

 The “Open Capture File” dialog box allows you to search for a capture file
containing previously captured packets for display in Wireshark. The following
sections show some examples of the Wireshark “Open File” dialog box. The
appearance of this dialog depends on the system. However, the functionality
should be the same across systems.

Common dialog behavior on all systems:

	
Select files and directories.

	
Click the Open button to accept your selected file and open it.

	
Click the Cancel button to go back to Wireshark and not load a capture file.

	
The Help button will take you to this section of the “User’s Guide”.

Wireshark adds the following controls:

	
View file preview information such as the size and the number of packets in a selected a capture file.

	
Specify a read filter with the “Read filter” field.
This filter will be used when opening the new file.
The text field background will turn green for a valid filter string and red for an invalid one.
Read filters can be used to exclude various types of traffic, which can be useful for large capture files.
They use the same syntax as display filters, which are discussed in detail in Filtering Packets While Viewing.

	
Optionally force Wireshark to read a file as a particular type using the “Automatically detect file type” drop-down.

[image: ws open win32]

Figure 36. “Open” on Microsoft Windows

This is the common Windows file open dialog along with some Wireshark extensions.

[image: ws open qt5]

Figure 37. “Open” - Linux and UNIX

This is the common Qt file open dialog along with some Wireshark extensions.

Input File Formats

 The native capture file formats used by Wireshark are:

	
pcap. The default format used by the libpcap packet capture library. Used
by tcpdump, _Snort, Nmap, Ntop, and many other tools.

	
pcapng. A flexible, extensible successor to the pcap format.
Wireshark 1.8 and later save files as pcapng by default. Versions
prior to 1.8 used pcap. Used by Wireshark and by tcpdump in newer
versions of macOS.

The following file formats from other capture tools can be opened by Wireshark:

	
Oracle (previously Sun) snoop and atmsnoop captures

	
Finisar (previously Shomiti) Surveyor captures

	
Microsoft Network Monitor captures

	
Novell LANalyzer captures

	
AIX iptrace captures

	
Cinco Networks NetXray captures

	
NETSCOUT (previously Network Associates/Network General) Windows-based
Sniffer and Sniffer Pro captures

	
Network General/Network Associates DOS-based Sniffer captures
(compressed or uncompressed) captures

	
LiveAction (previously WildPackets/Savvius)
*Peek/EtherHelp/PacketGrabber captures

	
RADCOM’s WAN/LAN Analyzer captures

	
Viavi (previously Network Instruments) Observer captures

	
Lucent/Ascend router debug output

	
captures from HP-UX nettl

	
Toshiba’s ISDN routers dump output

	
output from i4btrace from the ISDN4BSD project

	
traces from the EyeSDN USB S0

	
the IPLog format output from the Cisco Secure Intrusion Detection System

	
pppd logs (pppdump format)

	
the output from VMS’s TCPIPtrace/TCPtrace/UCX$TRACE utilities

	
the text output from the DBS Etherwatch VMS utility

	
Visual Networks’ Visual UpTime traffic capture

	
the output from CoSine L2 debug

	
the output from InfoVista (previously Accellent) 5Views LAN agents

	
Endace Measurement Systems’ ERF format captures

	
Linux Bluez Bluetooth stack hcidump -w traces

	
Catapult (now Ixia/Keysight) DCT2000 .out files

	
Gammu generated text output from Nokia DCT3 phones in Netmonitor mode

	
IBM Series (OS/400) Comm traces (ASCII & UNICODE)

	
Juniper Netscreen snoop captures

	
Symbian OS btsnoop captures

	
Tamosoft CommView captures

	
Tektronix K12xx 32bit .rf5 format captures

	
Tektronix K12 text file format captures

	
Apple PacketLogger captures

	
Captures from Aethra Telecommunications’ PC108 software for their test instruments

	
Citrix NetScaler Trace files

	
Android Logcat binary and text format logs

	
Colasoft Capsa and PacketBuilder captures

	
Micropross mplog files

	
Unigraf DPA-400 DisplayPort AUX channel monitor traces

	
802.15.4 traces from Daintree’s Sensor Network Analyzer

	
MPEG-2 Transport Streams as defined in ISO/IEC 13818-1

	
Log files from the candump utility

	
Logs from the BUSMASTER tool

	
Ixia IxVeriWave raw captures

	
Rabbit Labs CAM Inspector files

	
systemd journal files

	
3GPP TS 32.423 trace files

New file formats are added from time to time.

It may not be possible to read some formats dependent on the packet types
captured. Ethernet captures are usually supported for most file formats but it
may not be possible to read other packet types such as PPP or IEEE 802.11 from
all file formats.

Saving Captured Packets

 You can save captured packets by using the File › Save or File › Save As…​ menu items.
You can choose which packets to save and which file format to be used.

Not all information will be saved in a capture file. For example, most file
formats don’t record the number of dropped packets. See
Capture Files for details.

The “Save Capture File As” Dialog Box

 The “Save Capture File As” dialog box allows you to save the current capture to a file.
The exact appearance of this dialog depends on your system.
However, the functionality is the same across systems.
Examples are shown below.

[image: ws save as win32]

Figure 38. “Save” on Microsoft Windows

This is the common Windows file save dialog with some additional Wireshark extensions.

[image: ws save as qt5]

Figure 39. “Save” on Linux and UNIX

This is the common Qt file save dialog with additional Wireshark extensions.

You can perform the following actions:

	
Type in the name of the file in which you wish to save the captured packets.

	
Select the directory to save the file into.

	
Specify the format of the saved capture file by clicking on the “Save as” drop-down box.
You can choose from the types described in Output File Formats.
Some capture formats may not be available depending on the packet types captured.

	
The Help button will take you to this section of the “User’s Guide”.

	
“Compress with gzip” will compress the capture file as it is being written to disk.

	
Click the Save button to accept your selected file and save it.

	
Click on the Cancel button to go back to Wireshark without saving any packets.

If you don’t provide a file extension to the filename (e.g., .pcap) Wireshark will append the standard file extension for that file format.

Wireshark can convert file formats

You can convert capture files from one format to another by opening a capture and saving it as a different format.

If you wish to save some of the packets in your capture file you can do so via The “Export Specified Packets” Dialog Box.

Output File Formats

 Wireshark can save the packet data in its native file format (pcapng) and in the
file formats of other protocol analyzers so other tools can read the capture
data.

Saving in a different format might lose data

Saving your file in a different format might lose information such as comments, name resolution, and time stamp resolution.
See Time Stamps for more information on time stamps.

The following file formats can be saved by Wireshark (with the known file extensions):

	
pcapng (*.pcapng). A flexible, extensible successor to the
libpcap format. Wireshark 1.8 and later save files as pcapng by
default. Versions prior to 1.8 used libpcap.

	
pcap (*.pcap). The default format used by the libpcap
packet capture library. Used by tcpdump, _Snort, Nmap, Ntop,
and many other tools.

	
Accellent 5Views (*.5vw)

	
captures from HP-UX nettl ({asterisktrc0,*.trc1)

	
Microsoft Network Monitor - NetMon (*.cap)

	
Network Associates Sniffer - DOS
(*.cap,*.enc,*.trc,*.fdc,*.syc)

	
Cinco Networks NetXray captures (*.cap)

	
Network Associates Sniffer - Windows (*.cap)

	
Network Instruments/Viavi Observer (*.bfr)

	
Novell LANalyzer (*.tr1)

	
Oracle (previously Sun) snoop (*.snoop,*.cap)

	
Visual Networks Visual UpTime traffic (*.*)

	
Symbian OS btsnoop captures (*.log)

	
Tamosoft CommView captures (*.ncf)

	
Catapult (now Ixia/Keysight) DCT2000 .out files (*.out)

	
Endace Measurement Systems’ ERF format capture(*.erf)

	
EyeSDN USB S0 traces (*.trc)

	
Tektronix K12 text file format captures (*.txt)

	
Tektronix K12xx 32bit .rf5 format captures (*.rf5)

	
Android Logcat binary logs (*.logcat)

	
Android Logcat text logs (*.*)

	
Citrix NetScaler Trace files (*.cap)

New file formats are added from time to time.

Whether or not the above tools will be more helpful than Wireshark is a different question ;-)

Third party protocol analyzers may require specific file extensions

Wireshark examines a file’s contents to determine its type. Some other protocol
analyzers only look at a file’s extension. For example, you might need to use
the .cap extension in order to open a file using the Windows version
of Sniffer.

Merging Capture Files

 Sometimes you need to merge several capture files into one. For example, this can
be useful if you have captured simultaneously from multiple interfaces at once
(e.g., using multiple instances of Wireshark).

There are three ways to merge capture files using Wireshark:

	
Use the File › Merge menu to open the “Merge” dialog.
See The “Merge With Capture File” Dialog Box for details.
This menu item will be disabled unless you have loaded a capture file.

	
Use drag and drop to drop multiple files on the main window.
Wireshark will try to merge the packets in chronological order from the dropped files into a newly created temporary file.
If you drop a single file, it will simply replace the existing capture.

	
Use the mergecap tool from the command line to merge capture files.
This tool provides the most options to merge capture files.
See mergecap: Merging multiple capture files into one for details.

The “Merge With Capture File” Dialog Box

 This lets you select a file to be merged into the currently loaded file.
If your current data has not been saved you will be asked to save it first.

Most controls of this dialog will work the same way as described in the “Open Capture File” dialog box.
See The “Open Capture File” Dialog Box for details.

Specific controls of this merge dialog are:

	
Prepend packets

	
Prepend the packets from the selected file before the currently loaded packets.

	
Merge chronologically

	
Merge both the packets from the selected and currently loaded file in chronological order.

	
Append packets

	
Append the packets from the selected file after the currently loaded packets.

[image: ws merge win32]

Figure 40. “Merge” on Microsoft Windows

This is the common Windows file open dialog with additional Wireshark extensions.

[image: ws merge qt5]

Figure 41. “Merge” on Linux and UNIX

This is the Qt file open dialog with additional Wireshark extensions.

Import Hex Dump

 Wireshark can read in a hex dump and write the data described into a
temporary libpcap capture file. It can read hex dumps with multiple packets in
them, and build a capture file of multiple packets. It is also capable of
generating dummy Ethernet, IP and UDP, TCP, or SCTP headers, in order to build
fully processable packet dumps from hexdumps of application-level data only.
Alternatively, a Dummy PDU header can be added to specify a dissector the data
should be passed to initially.

Two methods for converting the input are supported:

Standard ASCII Hexdumps

 Wireshark understands many different hex dump formats. The native format
that Wireshark displays in the Packet Bytes pane, copies to the clipboard,
prints, and saves is that generated by od -Ax -tx1 -v or hexdump -X -v.
That is, each line begins with an offset describing the position in the packet,
each byte is individually displayed, with spaces separating the bytes from
each other, and repeated or all NUL ('\0') lines are not omitted. Hex digits
can be upper or lowercase. Wireshark can handle other hex dump formats, some
of which can be automatically detected and some of which require enabling
options to properly recognize.

Offsets are followed by one or more spaces or tabs separating them from the
bytes. Offsets optionally can be followed by a single colon after the digits.
Offsets can be between 3 and 8 digits; hexadecimal base (radix) is assumed by
default, but they can also be in octal or decimal. If offsets are in hex,
they can be preceded by 0x or 0X. Each packet must begin with offset zero,
and an offset zero indicates the beginning of a new packet. Offset values must
be correct; an unexpected value causes the current packet to be aborted and the
next packet start awaited. There is also a single packet mode with no offsets.

There is no limit on the width or number of bytes per line, but lines with only
hex bytes without a leading offset are ignored (i.e., line breaks
should not be inserted in long lines that wrap.) Bytes must be in hex; unlike
with offsets, other bases such as octal, decimal, or binary are unsupported.
Byte groups of two to four bytes are also supported. By default byte groups are
assumed to be in network (big-endian) byte order; the “Little-endian” option can
be used to support little-endian byte order.

Packets may be preceded by a direction indicator ('I' or 'O') and/or a
timestamp if indicated. If both are present, the direction indicator precedes
the timestamp. The format of the timestamps must be specified. If no timestamp
is parsed, in the case of the first packet the current system time is used,
while subsequent packets are written with timestamps one microsecond later than
that of the previous packet.

Other text in the input data is ignored. Any text before the offset is
ignored, including email forwarding characters '>'. Any text on a line
after the bytes is ignored, e.g. an ASCII character dump (but enable the
“ASCII identification” option to ensure that hex digits in the character
dump are ignored if there is no delimiter between the hex dump and the
ASCII character translation).
Any line where the first non-whitespace character is a '#' will be ignored
as a comment. Some hex dump utilities use a line containing a single '*'
to indicate omitted lines, either duplicating the previous line or entirely
consisting of NUL ('\0') bytes; this is not supported. Any lines of text
between the bytestring lines are considered preamble; the beginning of the
preamble is scanned for the direction indicator and timestamp as mentioned
above and otherwise ignored.

Here is a sample dump that can be imported, including optional
directional indicator and timestamp:

 I 2019-05-14T19:04:57Z
000000 00 e0 1e a7 05 6f 00 10
000008 5a a0 b9 12 08 00 46 00
000010 03 68 00 00 00 00 0a 2e
000018 ee 33 0f 19 08 7f 0f 19
000020 03 80 94 04 00 00 10 01
000028 16 a2 0a 00 03 50 00 0c
000030 01 01 0f 19 03 80 11 01

Regular Text Dumps

 Wireshark is also capable of scanning the input using a custom Perl regular
expression as specified by GLib’s GRegex here.
Using a regex capturing a single packet in the given file
Wireshark will search the given file from start to the second to last character
(the last character has to be \n and is ignored)
for non-overlapping (and non-empty) strings matching the given regex and then
identify the fields to import using named capturing subgroups. Using provided
format information for each field they are then decoded and translated into a
standard libpcap file retaining packet order.

Note that each named capturing subgroup has to match exactly once a packet,
but they may be present multiple times in the regex.

For example, the following dump:

 > 0:00:00.265620 a130368b000000080060
> 0:00:00.280836 a1216c8b00000000000089086b0b82020407
< 0:00:00.295459 a2010800000000000000000800000000
> 0:00:00.296982 a1303c8b00000008007088286b0bc1ffcbf0f9ff
> 0:00:00.305644 a121718b0000000000008ba86a0b8008
< 0:00:00.319061 a2010900000000000000001000600000
> 0:00:00.330937 a130428b00000008007589186b0bb9ffd9f0fdfa3eb4295e99f3aaffd2f005
> 0:00:00.356037 a121788b0000000000008a18

could be imported using these settings:

 regex: ^(?<dir>[<>])\s(?<time>\d+:\d\d:\d\d.\d+)\s(?<data>[0-9a-fA-F]+)$
timestamp: %H:%M:%S.%f
dir: in: < out: >
encoding: HEX

Caution has to be applied when discarding the anchors ^ and $, as the input
is searched, not parsed, meaning even most incorrect regexes will produce valid
looking results when not anchored (however, anchors are not guaranteed to prevent
this). It is generally recommended to sanity check any files created using
this conversion.

Supported fields:

	
data: Actual captured frame data
The only mandatory field. This should match the encoded binary data captured and
is used as the actual frame data to import.

	
time: timestamp for the packet
The captured field will be parsed according to the given timestamp format into a
timestamp.

If no timestamp is present an arbitrary counter will count up seconds and
nanoseconds by one each packet.

	
dir: the direction the packet was sent over the wire
The captured field is expected to be one character in length, any remaining
characters are ignored (e.g., given "Input" only the 'I' is looked at). This
character is compared to lists of characters corresponding to inbound and
outbound and the packet is assigned the corresponding direction.
If neither list yields a match, the direction is set to unknown.

If this field is not specified the entire file has no directional information.

	
seqno: an ID for this packet
Each packet can be assigned an arbitrary ID that can used as field by Wireshark.
This field is assumed to be a positive integer base 10. This field can e.g.
be used to reorder out of order captures after the import.

If this field is not given, no IDs will be present in the resulting file.

The “Import From Hex Dump” Dialog Box

 This dialog box lets you select a text file, containing a hex dump of packet
data, to be imported and set import parameters.

[image: ws file import]

Figure 42. The “Import from Hex Dump” dialog in Hex Dump mode

Specific controls of this import dialog are split in three sections:

	
File Source

	
Determine which input file has to be imported

	
Input Format

	
Determine how the input file has to be interpreted.

	
Encapsulation

	
Determine how the data is to be encapsulated.

File source

	
Filename / Browse

	
Enter the name of the text file to import. You can use Browse to browse for a
file.

Input Format

 This section is split in the two alternatives for input conversion, accessible in
the two Tabs "Hex Dump" and "Regular Expression"

In addition to the conversion mode specific inputs, there are also common
parameters, currently only the timestamp format.

The Hex Dump tab

	
Offsets

	
Select the radix of the offsets given in the text file to import. This is
usually hexadecimal, but decimal and octal are also supported. Select None
when only the bytes are present. These will be imported as a single packet.

	
Direction indication

	
Tick this box if the text file to import has direction indicators before each
frame. These are on a separate line before each frame and start with either
I or i for input and O or o for output.

The Regular Expression tab

[image: ws file import regex]

Figure 43. The "Regular Expression" tab inside the "Import from Hex Dump” dialog.

	
Packet format regular expression

	
This is the regex used for searching packets and metadata inside the input file.
Named capturing subgroups are used to find the individual fields. Anchors ^ and
$ are set to match directly before and after newlines \n or \r\n. See
GRegex for a full
documentation.

	
Data encoding

	
The Encoding used for the binary data. Supported encodings are plain-hexadecimal,
-octal, -binary and base64. Plain here means no additional
characters are present in the data field beyond whitespaces, which are ignored.
Any unexpected characters abort the import process.
Ignored whitespaces are \r, \n, \t, \v, ` ` and only for hex :, only
for base64 =.

Any incomplete bytes at the field’s end are assumed to be padding to fill the
last complete byte. These bits should be zero, however, this is not checked.

	
Direction indication

	
The lists of characters indicating incoming vs. outgoing packets. These fields
are only available when the regex contains a (?<dir>…​) group.

Common items

	
Timestamp Format

	
This is the format specifier used to parse the timestamps in the text file to
import. It uses the same format as strptime(3) with the addition of %f for
zero padded fractions of seconds. The precision of %f is determined from its
length. The most common fields are %H, %M and %S for hours, minutes and
seconds. The straightforward HH:MM:SS format is covered by %T. For a full
definition of the syntax look for strptime(3),
In Regex mode this field is only available when a (?<time>…​) group is present.

In Hex Dump mode if there are no timestamps in the text file to import, leave this
field empty and timestamps will be generated based on the time of import.

Encapsulation

	
Encapsulation type

	
Here you can select which type of frames you are importing. This all depends on
from what type of medium the dump to import was taken. It lists all types that
Wireshark understands, so as to pass the capture file contents to the right
dissector.

	
Dummy header

	
When Ethernet encapsulation is selected you have to option to prepend dummy
headers to the frames to import. These headers can provide artificial Ethernet,
IP, UDP, TCP or SCTP headers or SCTP data chunks. When selecting a type of
dummy header, the applicable entries are enabled, others are greyed out and
default values are used.
When the Wireshark Upper PDU export encapsulation is selected the option
ExportPDU becomes available. This allows you to select the name of the
dissector these frames are to be directed to.

	
Maximum frame length

	
You may not be interested in the full frames from the text file, just the first
part. Here you can define how much data from the start of the frame you want to
import. If you leave this open the maximum is set to 256kiB.

Once all input and import parameters are setup click Import to start the
import. If your current data wasn’t saved before you will be asked to save it
first.

If the import button doesn’t unlock, make sure all encapsulation parameters are
in the expected range and all unlocked fields are populated when using regex mode
(the placeholder text is not used as default).

When completed there will be a new capture file loaded with the frames imported
from the text file.

File Sets

 When using the “Multiple Files” option while doing a capture (see:
Capture files and file modes), the capture data is spread over several capture files,
called a file set.

As it can become tedious to work with a file set by hand, Wireshark provides
some features to handle these file sets in a convenient way.

How does Wireshark detect the files of a file set?

A filename in a file set uses the format Prefix_Number_DateTimeSuffix (or,
in Wireshark 4.4.0 and later, Prefix_DateTime_NumberSuffix) which might
look something like test_00001_20250714183910.pcap. All files of a file
set share the same prefix (e.g., “test”) and suffix (e.g., “.pcap”) and a
varying middle part. Files are also allowed to have a second compression
suffix of types that Wireshark can open; the compression suffix does not
have to match for all files in a set.

To find the files of a file set, Wireshark scans the directory where the
currently loaded file resides and checks for files matching the filename pattern
(prefix and suffix) of the currently loaded file.

This simple mechanism usually works well but has its drawbacks. If several file
sets were captured with the same prefix and suffix, Wireshark will detect them
as a single file set. If files were renamed or spread over several directories
the mechanism will fail to find all files of a set.

The following features in the File › File Set submenu are available to work
with file sets in a convenient way:

	
The “List Files” dialog box will list the files Wireshark has recognized as
being part of the current file set.

	
Next File closes the current and opens the next file in the file
set.

	
Previous File closes the current and opens the previous file in the
file set.

The “List Files” Dialog Box

[image: ws file set dialog]

Figure 44. The “List Files” dialog box

Each line contains information about a file of the file set:

	
Filename

	
The name of the file. If you click on the filename (or the radio
button left to it), the current file will be closed and the corresponding
capture file will be opened.

	
Created

	
The creation time of the file.

	
Last Modified

	
The last time the file was modified.

	
Size

	
The size of the file.

The last line will contain info about the currently used directory where all of
the files in the file set can be found.

The content of this dialog box is updated each time a capture file is
opened/closed.

The Close button will, well, close the dialog box.

Exporting Data

 Wireshark provides a variety of options for exporting packet data.
This section describes general ways to export data from the main Wireshark application.
There are many other ways to export or extract data from capture files, including processing tshark output and customizing Wireshark and TShark using Lua scripts.

The “Export Specified Packets” Dialog Box

[image: ws export specified packets]

Figure 45. The “Export Specified Packets” dialog box

This is similar to the “Save” dialog box, but it lets you save specific packets.
This can be useful for trimming irrelevant or unwanted packets from a capture file.
See Packet Range for details on the range controls.

The “Export Packet Dissections” Dialog Box

 This lets you save the packet list, packet details, and packet bytes as plain text, CSV, JSON, and other formats.

[image: ws export packet dissections]

Figure 46. The “Export Packet Dissections” dialog box

The format can be selected from the “Export As” drop-down and further customized using the “Packet Range” and “Packet Format” controls.
Some controls are unavailable for some formats, notably CSV and JSON.
The following formats are supported:

	
Plain text as shown in the main window

	
Comma-separated values (CSV)

	
C-compatible byte arrays

	
PSML (summary XML)

	
PDML (detailed XML)

	
JavaScript Object Notation (JSON)

Here are some examples of exported data:

Listing 6. Plain text
 No. Time Source Destination Protocol Length SSID Info
 1 0.000000 200.121.1.131 172.16.0.122 TCP 1454 10554 → 80 [ACK] Seq=1 Ack=1 Win=65535 Len=1400 [TCP segment of a reassembled PDU]

Frame 1: 1454 bytes on wire (11632 bits), 1454 bytes captured (11632 bits)
Ethernet II, Src: 00:50:56:c0:00:01, Dst: 00:0c:29:42:12:13
Internet Protocol Version 4, Src: 200.121.1.131 (200.121.1.131), Dst: 172.16.0.122 (172.16.0.122)
 0100 = Version: 4
 0101 = Header Length: 20 bytes (5)
 Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
 Total Length: 1440
 Identification: 0x0141 (321)
 Flags: 0x0000
 ...0 0000 0000 0000 = Fragment offset: 0
 Time to live: 106
 Protocol: TCP (6)
 Header checksum: 0xd390 [validation disabled]
 [Header checksum status: Unverified]
 Source: 200.121.1.131 (200.121.1.131)
 Destination: 172.16.0.122 (172.16.0.122)
 [Source GeoIP: PE, ASN 6147, Telefonica del Peru S.A.A.]
Transmission Control Protocol, Src Port: 10554, Dst Port: 80, Seq: 1, Ack: 1, Len: 1400

If you would like to be able to import any previously exported packets from a plain text file it is recommended that you do the following:

	
Add the “Absolute date and time” column.

	
Temporarily hide all other columns.

	
Disable the Edit › Preferences › Protocols › Data “Show not dissected data
on new Packet Bytes pane” preference. More details are provided in
Preferences

	
Include the packet summary line.

	
Exclude column headings.

	
Exclude packet details.

	
Include the packet bytes.

Listing 7. CSV
 "No.","Time","Source","Destination","Protocol","Length","SSID","Info","Win Size"
"1","0.000000","200.121.1.131","172.16.0.122","TCP","1454","","10554 > 80 [ACK] Seq=1 Ack=1 Win=65535 Len=1400 [TCP segment of a reassembled PDU]","65535"
"2","0.000011","172.16.0.122","200.121.1.131","TCP","54","","[TCP ACKed unseen segment] 80 > 10554 [ACK] Seq=1 Ack=11201 Win=53200 Len=0","53200"
"3","0.025738","200.121.1.131","172.16.0.122","TCP","1454","","[TCP Spurious Retransmission] 10554 > 80 [ACK] Seq=1401 Ack=1 Win=65535 Len=1400 [TCP segment of a reassembled PDU]","65535"
"4","0.025749","172.16.0.122","200.121.1.131","TCP","54","","[TCP Window Update] [TCP ACKed unseen segment] 80 > 10554 [ACK] Seq=1 Ack=11201 Win=63000 Len=0","63000"
"5","0.076967","200.121.1.131","172.16.0.122","TCP","1454","","[TCP Previous segment not captured] [TCP Spurious Retransmission] 10554 > 80 [ACK] Seq=4201 Ack=1 Win=65535 Len=1400 [TCP segment of a reassembled PDU]","65535"

Listing 8. JSON
 {
 "_index": "packets-2014-06-22",
 "_type": "doc",
 "_score": null,
 "_source": {
 "layers": {
 "frame": {
 "frame.encap_type": "1",
 "frame.time": "Jun 22, 2014 13:29:41.834477000 PDT",
 "frame.offset_shift": "0.000000000",
 "frame.time_epoch": "1403468981.834477000",
 "frame.time_delta": "0.450535000",
 "frame.time_delta_displayed": "0.450535000",
 "frame.time_relative": "0.450535000",
 "frame.number": "2",
 "frame.len": "86",
 "frame.cap_len": "86",
 "frame.marked": "0",
 "frame.ignored": "0",
 "frame.protocols": "eth:ethertype:ipv6:icmpv6",
 "frame.coloring_rule.name": "ICMP",
 "frame.coloring_rule.string": "icmp || icmpv6"
 },
 "eth": {
 "eth.dst": "33:33:ff:9e:e3:8e",
 "eth.dst_tree": {
 "eth.dst_resolved": "33:33:ff:9e:e3:8e",
 "eth.dst.oui": "3355647",
 "eth.addr": "33:33:ff:9e:e3:8e",
 "eth.addr_resolved": "33:33:ff:9e:e3:8e",
 "eth.addr.oui": "3355647",
 "eth.dst.lg": "1",
 "eth.lg": "1",
 "eth.dst.ig": "1",
 "eth.ig": "1"
 },
 "eth.src": "00:01:5c:62:8c:46",
 "eth.src_tree": {
 "eth.src_resolved": "00:01:5c:62:8c:46",
 "eth.src.oui": "348",
 "eth.src.oui_resolved": "Cadant Inc.",
 "eth.addr": "00:01:5c:62:8c:46",
 "eth.addr_resolved": "00:01:5c:62:8c:46",
 "eth.addr.oui": "348",
 "eth.addr.oui_resolved": "Cadant Inc.",
 "eth.src.lg": "0",
 "eth.lg": "0",
 "eth.src.ig": "0",
 "eth.ig": "0"
 },
 "eth.type": "0x000086dd"
 },
 "ipv6": {
 "ipv6.version": "6",
 "ip.version": "6",
 "ipv6.tclass": "0x00000000",
 "ipv6.tclass_tree": {
 "ipv6.tclass.dscp": "0",
 "ipv6.tclass.ecn": "0"
 },
 "ipv6.flow": "0x00000000",
 "ipv6.plen": "32",
 "ipv6.nxt": "58",
 "ipv6.hlim": "255",
 "ipv6.src": "2001:558:4080:16::1",
 "ipv6.addr": "2001:558:4080:16::1",
 "ipv6.src_host": "2001:558:4080:16::1",
 "ipv6.host": "2001:558:4080:16::1",
 "ipv6.dst": "ff02::1:ff9e:e38e",
 "ipv6.addr": "ff02::1:ff9e:e38e",
 "ipv6.dst_host": "ff02::1:ff9e:e38e",
 "ipv6.host": "ff02::1:ff9e:e38e",
 "ipv6.geoip.src_summary": "US, ASN 7922, Comcast Cable Communications, LLC",
 "ipv6.geoip.src_summary_tree": {
 "ipv6.geoip.src_country": "United States",
 "ipv6.geoip.country": "United States",
 "ipv6.geoip.src_country_iso": "US",
 "ipv6.geoip.country_iso": "US",
 "ipv6.geoip.src_asnum": "7922",
 "ipv6.geoip.asnum": "7922",
 "ipv6.geoip.src_org": "Comcast Cable Communications, LLC",
 "ipv6.geoip.org": "Comcast Cable Communications, LLC",
 "ipv6.geoip.src_lat": "37.751",
 "ipv6.geoip.lat": "37.751",
 "ipv6.geoip.src_lon": "-97.822",
 "ipv6.geoip.lon": "-97.822"
 }
 },
 "icmpv6": {
 "icmpv6.type": "135",
 "icmpv6.code": "0",
 "icmpv6.checksum": "0x00005b84",
 "icmpv6.checksum.status": "1",
 "icmpv6.reserved": "00:00:00:00",
 "icmpv6.nd.ns.target_address": "2001:558:4080:16:be36:e4ff:fe9e:e38e",
 "icmpv6.opt": {
 "icmpv6.opt.type": "1",
 "icmpv6.opt.length": "1",
 "icmpv6.opt.linkaddr": "00:01:5c:62:8c:46",
 "icmpv6.opt.src_linkaddr": "00:01:5c:62:8c:46"
 }
 }
 }
 }
 }
]

The “Export Selected Packet Bytes” Dialog Box

 Export the bytes selected in the “Packet Bytes” pane into a raw binary file.

[image: ws export selected]

Figure 47. The “Export Selected Packet Bytes” dialog box

	
File name

	
The file name to export the packet data to.

	
Save as type

	
The file extension.

The “Export PDUs to File…​” Dialog Box

 The “Export PDUs to File…​” dialog box allows you to filter the captured Protocol Data Units (PDUs) and export them into the file. It allows you to export reassembled PDUs avoiding lower layers such as HTTP without TCP, and decrypted PDUs without the lower protocols such as HTTP without TLS and TCP.

	
In the main menu select File › Export PDUs to File…​. Wireshark will open a corresponding dialog Export PDUs to File window.

[image: ws export pdus to file]

Figure 48. Export PDUs to File window

	
To select the data according to your needs, optionally type a filter value into the Display Filter field. For more information about filter syntax, see the Wireshark Filters man page.

	
In the field below the Display Filter field you can choose the level from which you want to export the PDUs to the file. There are seven levels:

	
DLT User. You can export a protocol, which is framed in the user data link type table without the need to reconfigure the DLT user table. For more information, see the How to Dissect Anything page.

	
DVB-CI. You can use it for the Digital Video Broadcasting (DVB) protocol.

	
Logcat and Logcat Text. You can use them for the Android logs.

	
OSI layer 3. You can use it to export PDUs encapsulated in the IPSec or SCTP protocols.

	
OSI layer 4. You can use it to export PDUs encapsulated in the TCP or UDP protocols.

	
OSI layer 7. You can use it to export the following protocols: CredSSP over TLS, Diameter, protocols encapsulated in TLS and DTLS, H.248, Megaco, RELOAD framing, SIP, SMPP.

As a developer you can add any dissector to the existing list or define a new entry in the list by using the functions in epan/exported_pdu.h.

	
To finish exporting PDUs to file, click the OK button in the bottom-right corner. This will close the originally captured file and open the exported results instead as a temporary file in the main Wireshark window.

	
You may save the temporary file just like any captured file. See Saving Captured Packets for details.

The file produced has a Wireshark Upper PDU encapsulation type that has somewhat limited support outside of Wireshark, but is very flexible and can contain PDUs for any protocol for which there is a Wireshark dissector.

The “Strip Headers…​” Dialog Box

 The “Strip Headers…​” dialog box allows you to filter known encapsulation types on whatever protocol layer they appear and export them into a new capture file, removing lower-level protocols. It allows you to export reassembled packets and frames without lower layers such as GPF, GRE, GSE, GTP-U, MPLS, MPE, PPP, and more. If Wireshark has performed decryption, then you can export decrypted IP from protocols like IEEE 802.11 or IPSec without having to save encryption keys.

The procedure is similar to that of The “Export PDUs to File…​” Dialog Box:

	
In the main menu select File › Strip Headers…​. Wireshark will open a corresponding dialog.

	
To select the data according to your needs, optionally type a filter value into the Display Filter field. For more information about filter syntax, see the Wireshark Filters man page.

	
In the field below the Display Filter field you can choose the encapsulation type you want to find and export to the file. There are two encapsulations supported:

	
Ethernet. You can use it to export Ethernet encapsulated in other protocols.

	
IP. You can use it to export IPv4 and IPv6 encapsulated in other protocols.

As a developer you can add encapsulations to the list by using the functions in epan/exported_pdu.h.

	
To finish exporting to file, click the OK button in the bottom-right corner. This will close the originally captured file and open the exported results instead as a temporary file in the main Wireshark window.

	
You may save the temporary file just like any captured file. See Saving Captured Packets for details.

The new capture files produced have standard encapsulation types and can be read in nearly any tool.

The “Export TLS Session Keys…​” Dialog Box

 Transport Layer Security (TLS) encrypts the communication between a client and a server. The most common use for it is web browsing via HTTPS.

Decryption of TLS traffic requires TLS secrets. You can get them in the form of stored session keys in a "key log file", or by using an RSA private key file. For more details, see the TLS wiki page.

The File › Export TLS Session Keys… menu option generates a new "key log file" which contains TLS session secrets known by Wireshark. This feature is useful if you typically decrypt TLS sessions using the RSA private key file. The RSA private key is very sensitive because it can be used to decrypt other TLS sessions and impersonate the server. Session keys can be used only to decrypt sessions from the packet capture file. However, session keys are the preferred mechanism for sharing data over the Internet.

To export captured TLS session keys, follow the steps below:

	
In the main menu select File › Export TLS Session Keys…​. Wireshark will open a corresponding dialog Export TLS Session Keys window.

[image: ws tls session keys]

Figure 49. Export TLS Session Keys window

	
Type the desired file name in the Save As field.

	
Choose the destination folder for your file in the Where field.

	
Press the Save button to complete the export file procedure.

The “Export Objects” Dialog Box

 This feature scans through the selected protocol’s streams in the currently
open capture file or running capture and allows the user to export reassembled
objects to the disk. For example, if you select HTTP, you can export HTML
documents, images, executables, and any other files transferred over HTTP
to the disk. If you have a capture running, this list is automatically
updated every few seconds with any new objects seen. The saved objects can then
be opened or examined independently of Wireshark.

[image: ws export objects]

Figure 50. The “Export Objects” dialog box

Columns:

	
Packet

	
The packet number in which this object was found. In some
cases, there can be multiple objects in the same packet.

	
Hostname

	
The hostname of the server that sent this object.

	
Content Type

	
The content type of this object.

	
Size

	
The size of this object in bytes.

Filename:
The filename for this object. Each protocol generates
the filename differently. For example, HTTP uses the
final part of the URI and IMF uses the subject of the email.

Inputs:

	
Text Filter

	
Only displays objects containing the specified text string.

	
Help

	
Opens this section of the “User’s Guide”.

	
Save All

	
Saves all objects (including those not displayed) using the filename from the
filename column. You will be asked what directory or folder to save them in.

	
Close

	
Closes the dialog without exporting.

	
Save

	
Saves the currently selected object as a filename you specify. The
default filename to save as is taken from the filename column of the objects
list.

Printing Packets

 To print packets, select the File › Print…​ menu item.
Wireshark will display the “Print” dialog box as shown below.

It’s easy to waste paper doing this

Printed output can contain lots of text, particularly if you print packet details and bytes.

The “Print” Dialog Box

[image: ws print]

Figure 51. The “Print” dialog box

The “Print” dialog box shows a preview area which shows the result of changing the packet format settings.
You can zoom in and out using the + and - keys and reset the zoom level using the 0 key.
The following settings are available in the Print dialog box:

	
Packet Format

	
Lets you specify what gets printed. See The “Packet Format” frame for details.

	
Summary line

	
Include a summary line for each packet.
The line will contain the same fields as the packet list.

	
Details

	
Print details for each packet.

	
Bytes

	
Print a hex dump of each packet.

	
Packet Range

	
Select the packets to be printed. See The “Packet Range” Frame for details.

Page Setup…​ lets you select the page size and orientation.

Print…​ prints to your default printer.

Cancel will close the dialog without printing.

Help will display this section of the “User’s Guide”.

The “Packet Range” Frame

 The packet range frame is a part of the “Export Specified Packets,” “Export Packet Dissections,” and “Print” dialog boxes.
You can use it to specify which packets will be exported or printed.

[image: ws packet range]

Figure 52. The “Packet Range” frame

By default, the Displayed button is set, which only exports or prints the packets that match the current display filter.
Selecting Captured will export or print all packets.
You can further limit what you export or print to the following:

	
All packets

	
All captured or displayed packets depending on the primary selection above.

	
Selected packet

	
Only the selected packet.

	
Marked packets

	
Only marked packets. See Marking Packets.

	
First to last marked

	
Lets you mark an inclusive range of packets.

	
Range

	
Lets you manually specify a range of packets, e.g., 5,10-15,20- will process the packet number five, the packets from packet number ten to fifteen (inclusive) and every packet from number twenty to the end of the capture.

	
Remove ignored packets

	
Don’t export or print ignored packets.
See Ignoring Packets.

The Packet Format Frame

 The packet format frame is also a part of the “Export Packet Dissections” and “Print” dialog boxes.
You can use it to specify which parts of dissection are exported or printed.

[image: ws packet format]

Figure 53. The “Packet Format” frame

Each of the settings below correspond to the packet list, packet detail, and packet bytes in the main window.

	
Packet summary line

	
Export or print each summary line as shown in the “Packet List” pane.

	
Include column headings

	
Include the column headers before each packet summary line.

	
Packet details

	
Export or print the contents of the “Packet Details” tree.

	
All collapsed

	
Export or print as if the “Packet Details” tree is in the “all collapsed” state.

	
As displayed

	
Export or print each packet as if its “Packet Details” tree were expanded in
the same way as the most recently selected packet.

	
All expanded

	
Export or print as if the “Packet Details” tree is in the “all expanded” state.

	
Packet Bytes

	
Export or print the contents of the “Packet Bytes” pane.

	
Include secondary data sources

	
Export or print the contents of all tabs of “Packet Bytes” pane, each
preceded by the tab label. When unchecked, export or print only the first
tab, which contains the frame data directly from the capture file, and not
the other tabs, which contain secondary data sources such as decrypted,
reassembled, or aligned data.

	
Include timestamp preamble

	
Export or print each packet timestamp on a line before the “Packet Bytes”
contents, using the time format from View › Time Display Format.

	
Each packet on a new page

	
For printing and some export formats, put each packet on a separate page.
For example, when exporting to a text file this will put a form feed character between each packet.

	
Capture information header

	
Add a header to each page with capture filename and the number of total packets and shown packets.

Working With Captured Packets

Viewing Packets You Have Captured

 Once you have captured some packets or you have opened a previously saved
capture file, you can view the packets that are displayed in the packet list
pane by simply clicking on a packet in the packet list pane, which will bring up
the selected packet in the tree view and byte view panes.

You can then expand any part of the tree to view detailed information about each
protocol in each packet. Clicking on an item in the tree will highlight the
corresponding bytes in the byte view. An example with a TCP packet selected is
shown in Wireshark with a TCP packet selected for viewing. It also has the Acknowledgment number in the TCP
header selected, which shows up in the byte view as the selected bytes.

[image: ws packet selected]

Figure 54. Wireshark with a TCP packet selected for viewing

You can also select and view packets the same way while Wireshark is capturing
if you selected “Update list of packets in real time” in the “Capture
Preferences” dialog box.

In addition you can view individual packets in a separate window as shown in
Viewing a packet in a separate window. You can do this by double-clicking on an item in the
packet list or by selecting the packet in which you are interested in the packet
list pane and selecting View › Show Packet in New Window. This allows you to
easily compare two or more packets, even across multiple files.

[image: ws packet sep win]

Figure 55. Viewing a packet in a separate window

Along with double-clicking the packet list and using the main menu there are a
number of other ways to open a new packet window:

	
Hold down the shift key and double-click on a frame link in the packet
details.

	
From The menu items of the “Packet List” pop-up menu.

	
From The menu items of the “Packet Details” pop-up menu.

Pop-up Menus

 You can open a pop-up menu over the “Packet List”, its column heading,
“Packet Details”, or “Packet Bytes” by clicking your right mouse button
on the corresponding item.

Pop-up Menu Of The “Packet List” Column Header

[image: ws column header popup menu]

Figure 56. Pop-up menu of the “Packet List” column header

The following table gives an overview of which functions are available
in this header, where to find the corresponding function in the main
menu, and a description of each item.

Table 18. The menu items of the “Packet List” column header pop-up menu

	Item
	Description

	Align Left

	Left-align values in this column.

	Align Center

	Center-align values in this column.

	Align Right

	Right-align values in this column.

	Column Preferences…​

	Open the “Preferences” dialog for this column.

	Edit Column

	Open the column editor toolbar for this column.

	Resize To Contents

	Resize the column to fit its values.

	Display as Values

	Display the raw values for fields.

	Display as Strings

	Display human-readable strings instead of raw values for fields.
Only applicable to custom columns with fields that have value strings
and custom columns which can be resolved to strings.

	Display as packet Details

	Display the values using the same format as in Packet Details.
Only applicable to custom columns.

	No., Time, Source, et al.

	Show or hide a column by selecting its item.

	Remove Column

	Remove this column, similar to deleting it in the “Preferences” dialog.

Pop-up Menu Of The “Packet List” Pane

[image: ws packet pane popup menu]

Figure 57. Pop-up menu of the “Packet List” pane

The following table gives an overview of which functions are available
in this pane, where to find the corresponding function in the main menu,
and a short description of each item.

Table 19. The menu items of the “Packet List” pop-up menu

	Item
	Corresponding main menu item
	Description

	Mark Packet (toggle)

	Edit

	Mark or unmark a packet.

	Ignore Packet (toggle)

	Edit

	Ignore or inspect this packet while dissecting the capture file.

	Set Time Reference (toggle)

	Edit

	Set or reset a time reference.

	Time Shift

	Edit

	Opens the “Time Shift” dialog, which allows you to adjust the timestamps
of some or all packets.

	Packet Comment…​

	Edit

	Opens the “Packet Comment” dialog, which lets you add a comment to a
single packet. Note that the ability to save packet comments depends on
your file format. E.g., pcapng supports comments, pcap does not.

	Edit Resolved Name

	
	Allows you to enter a name to resolve for the selected address.

	Apply as Filter

	Analyze

	Immediately replace or append the current display filter based on the most recent packet list or packet details item selected.
The first submenu item shows the filter and subsequent items show the different ways that the filter can be applied.

	Prepare as Filter

	Analyze

	Change the current display filter based on the most recent packet list or packet details item selected, but don’t apply it.
The first submenu item shows the filter and subsequent items show the different ways that the filter can be changed.

	Conversation Filter

	
	Apply a display filter with the address information from the selected packet.
For example, the IP menu entry will set a filter to show the traffic between the two IP addresses of the current packet.

	Colorize Conversation

	
	Create a new colorizing rule based on address information from the selected packet.

	SCTP

	
	Allows you to analyze and prepare a filter for this SCTP association.
See SCTP Windows.

	Follow

	Analyze

	Opens a sub-menu with options of various types of protocol streams
to follow. The entries for protocols which aren’t found in the
currently selected packet will not be shown.
See Following Protocol Streams.

	Copy › Summary as Text

	
	Copy the summary fields as displayed to the clipboard as tab-separated
text.

	Copy › …​as CSV

	
	Copy the summary fields as displayed to the clipboard as comma-separated
text.

	Copy › …​as YAML

	
	Copy the summary fields as displayed to the clipboard as YAML data.

	Copy › As Filter

	
	Prepare a display filter based on the currently selected item and copy
that filter to the clipboard.

	Copy › Bytes as Hex + ASCII Dump

	
	Copy the packet bytes to the clipboard in full “hexdump” format.

	Copy › …​as Hex Dump

	
	Copy the packet bytes to the clipboard in “hexdump” format without the
ASCII portion.

	Copy › …​as Printable Text

	
	Copy the packet bytes to the clipboard as ASCII text, excluding
non-printable characters.

	Copy › …​as a Hex Stream

	
	Copy the packet bytes to the clipboard as an unpunctuated list of hex
digits.

	Copy › …​as Raw Binary

	
	Copy the packet bytes to the clipboard as raw binary. The data is stored
in the clipboard using the MIME type “application/octet-stream”.

	Protocol Preferences

	
	Adjust the preferences for the selected protocol,
or disable it entirely. (You can re-enable it with the
“Enabled Protocols” dialog box.)

	Decode As…​

	Analyze

	Change or apply a new relation between two dissectors.

	Show Packet in New Window

	View

	Shows the selected packet in a separate window. The separate window
shows only the packet details and bytes. See Viewing a packet in a separate window for
details.

Pop-up Menu Of The “Packet Details” Pane

[image: ws details pane popup menu]

Figure 58. Pop-up menu of the “Packet Details” pane

The following table gives an overview of which functions are available in this
pane, where to find the corresponding function in the main menu, and a short
description of each item.

Table 20. The menu items of the “Packet Details” pop-up menu

	Item
	Corresponding main menu item
	Description

	Expand Subtrees

	View

	Expand the currently selected subtree.

	Collapse Subtrees

	View

	Collapse the currently selected subtree.

	Expand All

	View

	Expand all subtrees in all packets in the capture.

	Collapse All

	View

	Wireshark keeps a list of all the protocol subtrees that are expanded, and uses it to ensure that the correct subtrees are expanded when you display a packet. This menu item collapses the tree view of all packets in the capture list.

	Edit Resolved Name

	View

	Allows you to enter a name to resolve for the selected address.

	Apply as Column

	
	Use the selected protocol item to create a new column in the packet list.

	Apply as Filter

	Analyze

	Immediately replace or append the current display filter based on the most recent packet list or packet details item selected.
The first submenu item shows the filter and subsequent items show the different ways that the filter can be applied.

	Prepare as Filter

	Analyze

	Change the current display filter based on the most recent packet list or packet details item selected, but don’t apply it.
The first submenu item shows the filter and subsequent items show the different ways that the filter can be changed.

	Colorize with Filter

	
	This menu item uses a display filter with the information from the selected protocol item to build a new colorizing rule.

	Follow

	Analyze

	Opens a sub-menu with options of various types of protocol streams
to follow. The entries for protocols which aren’t found in the
currently selected packet will not be shown.
See Following Protocol Streams.

	Copy › All Visible Items

	Edit

	Copy the packet details as displayed.

	Copy › All Visible Selected Tree Items

	Edit

	Copy the selected packet detail and its children as displayed.

	Copy › Description

	Edit

	Copy the displayed text of the selected field to the system clipboard.

	Copy › Fieldname

	Edit

	Copy the name of the selected field to the system clipboard.

	Copy › Value

	Edit

	Copy the value of the selected field to the system clipboard.

	Copy › As Filter

	Edit

	Prepare a display filter based on the currently selected item and copy
it to the clipboard.

	Copy › Bytes as Hex + ASCII Dump

	
	Copy the packet bytes to the clipboard in full “hexdump” format.

	Copy › …​as Hex Dump

	
	Copy the packet bytes to the clipboard in “hexdump” format without the
ASCII portion.

	Copy › …​as Printable Text

	
	Copy the packet bytes to the clipboard as ASCII text, excluding
non-printable characters.

	Copy › …​as a Hex Stream

	
	Copy the packet bytes to the clipboard as an unpunctuated list of hex
digits.

	Copy › …​as Raw Binary

	
	Copy the packet bytes to the clipboard as raw binary. The data is stored
in the clipboard using the MIME type “application/octet-stream”.

	Copy › …​as Escaped String

	
	Copy the packet bytes to the clipboard as C-style escape sequences.

	Export Packet Bytes…​

	File

	This menu item is the same as the File menu item of the same name. It
allows you to export raw packet bytes to a binary file.

	Wiki Protocol Page

	
	Open the wiki page for the selected protocol in your web browser.

	Filter Field Reference

	
	Open the filter field reference web page for the selected protocol in your web browser.

	Protocol Preferences

	
	Adjust the preferences for the selected protocol,
or disable it entirely. (You can re-enable it with the
“Enabled Protocols” dialog box.)

	Decode As…​

	Analyze

	Change or apply a new relation between two dissectors.

	Go to Linked Packet

	Go

	If the selected field has a corresponding packet such as the matching
request for a DNS response, go to it.

	Show Linked Packet in New Window

	Go

	If the selected field has a corresponding packet such as the matching
request for a DNS response, show the selected packet in a separate
window. See Viewing a packet in a separate window for details.

Pop-up Menu Of The “Packet Bytes” Pane

[image: ws bytes pane popup menu]

Figure 59. Pop-up menu of the “Packet Bytes” pane

The following table gives an overview of which functions are available
in this pane along with a short description of each item.

Table 21. The menu items of the “Packet Bytes” pop-up menu

	Item
	Description

	Copy Bytes as Hex + ASCII Dump

	Copy the packet bytes to the clipboard in full “hexdump” format.

	…​as Hex Dump

	Copy the packet bytes to the clipboard in “hexdump” format without the
ASCII portion.

	…​as Printable Text

	Copy the packet bytes to the clipboard as ASCII text, excluding
non-printable characters.

	…​as a Hex Stream

	Copy the packet bytes to the clipboard as an unpunctuated list of hex
digits.

	…​as Raw Binary

	Copy the packet bytes to the clipboard as raw binary. The data is stored
in the clipboard using the MIME type “application/octet-stream”.

	…​as Escaped String

	Copy the packet bytes to the clipboard as C-style escape sequences.

	Show bytes as hexadecimal

	Display the byte data as hexadecimal digits.

	Show bytes as bits

	Display the byte data as binary digits.

	Show text based on packet

	Show the “hexdump” data with text.

	…​as ASCII

	Use ASCII encoding when displaying “hexdump” text.

	…​as EBCDIC

	Use EBCDIC encoding when displaying “hexdump” text.

Pop-up Menu Of The “Packet Diagram” Pane

[image: ws diagram pane popup menu]

Figure 60. Pop-up menu of the “Packet Diagram” pane

The following table gives an overview of which functions are available
in this pane along with a short description of each item.

Table 22. The menu items of the “Packet Diagram” pop-up menu

	Item
	Description

	Show Field Values

	Display current value for each field on the packet diagram.

	Save Diagram As…​

	Save the packet diagram to an image file (PNG, BMP, JPEG).

	Copy as Raster Image

	Copy the packet diagram to the clipboard in raster (ARGB32) format.

Filtering Packets While Viewing

 Wireshark has two filtering languages: capture filters and display filters.
Capture filters are used for filtering
when capturing packets and are discussed in Filtering while capturing.
Display filters are used for filtering
which packets are displayed and are discussed below.
For more information about display filter syntax, see the
wireshark-filter(4) man page.

Display filters allow you to concentrate on the packets you are interested in
while hiding the currently uninteresting ones. They allow you to only display packets
based on:

	
Protocol

	
The presence of a field

	
The values of fields

	
A comparison between fields

	
…​ and a lot more!

To only display packets containing a particular protocol, type the protocol name
in the display filter toolbar of the Wireshark
window and press enter to apply the filter. Filtering on the TCP protocol shows an
example of what happens when you type tcp in the display filter toolbar.

Protocol and field names are usually in lowercase.

Don’t forget to press enter or click on the apply display filter button after entering the filter
expression.

[image: ws display filter tcp]

Figure 61. Filtering on the TCP protocol

As you may have noticed, only packets containing the TCP protocol are now displayed,
so packets 1-10 are hidden and packet number 11
is the first packet displayed.

When using a display filter, all packets remain in the capture file. The display
filter only changes the display of the capture file but not its content!

To remove the filter, click on the Clear button to the right of the
display filter field. All packets will become visible again.

Display filters can be very powerful and are discussed in further detail in
Building Display Filter Expressions

It’s also possible to create display filters with the
Display Filter Expression dialog box. More information about
the Display Filter Expression dialog box is available in
The “Display Filter Expression” Dialog Box.

Building Display Filter Expressions

 Wireshark provides a display filter language that enables you
to precisely control which packets are displayed. They can be used
to check for the presence of a protocol or field, the value of a field, or
even compare two fields to each other. These comparisons can be combined
with logical operators, like "and" and "or", and parentheses
into complex expressions.

The following sections will go into the display filter functionality in
more detail.

There are many display filter examples on the Wireshark Wiki Display
Filter page at: https://wiki.wireshark.org/DisplayFilters.

Display Filter Fields

 The simplest display filter is one that displays a single protocol.
To only display packets containing a particular protocol, type the protocol
into Wireshark’s display filter toolbar. For example, to only
display TCP packets, type tcp into Wireshark’s display filter toolbar.
Similarly, to only display
packets containing a particular field, type the field
into Wireshark’s display filter toolbar. For example, to only display
HTTP requests, type http.request into Wireshark’s display filter toolbar.

You can filter on any protocol that Wireshark supports. You can
also filter on any field that a dissector adds to the tree view, if the dissector
has added an abbreviation for that field. A full list of the available protocols
and fields is available through the menu item
View › Internals › Supported Protocols.

Comparing Values

 You can build display filters that compare values using a number of different
comparison operators. For example, to only display packets to or
from the IP address 192.168.0.1, use ip.addr==192.168.0.1.

A complete list of available comparison operators is shown in Display Filter comparison operators.

English and C-like operators are interchangeable and can be mixed within a filter string.

Table 23. Display Filter comparison operators

	English
	Alias
	C-like
	Description
	Example

	eq

	any_eq

	==

	Equal (any if more than one)

	ip.src == 10.0.0.5

	ne

	all_ne

	!=

	Not equal (all if more than one)

	ip.src != 10.0.0.5

	
	all_eq

	===

	Equal (all if more than one)

	ip.src === 10.0.0.5

	
	any_ne

	!==

	Not equal (any if more than one)

	ip.src !== 10.0.0.5

	gt

	
	>

	Greater than

	frame.len > 10

	lt

	
	<

	Less than

	frame.len < 128

	ge

	
	>=

	Greater than or equal to

	frame.len ge 0x100

	le

	
	<=

	Less than or equal to

	frame.len <= 0x20

	contains

	
	
	Protocol, field or slice contains a value

	sip.To contains "a1762"

	matches

	
	~

	Protocol or text field matches a Perl-compatible regular expression

	http.host matches "acme\\.(org|com|net)"

The meaning of != (all not equal) was changed in Wireshark 3.6.
Before it used to mean "any not equal".

All protocol fields have a type. Display Filter Field Types provides a list
of the types with examples of how to use them in display filters.

Display Filter Field Types

	
Unsigned integer

	
Can be 8, 16, 24, 32, or 64 bits. You can express integers in decimal, octal,
hexadecimal or binary. The following display filters are equivalent:
ip.len le 1500

ip.len le 02734

ip.len le 0x5dc

ip.len le 0b10111011100

	
Signed integer

	
Can be 8, 16, 24, 32, or 64 bits. As with unsigned integers you can use
decimal, octal, hexadecimal or binary.

	
Boolean

	
Can be 1 or "True", 0 or "False" (without quotes).
A Boolean field is present regardless if its value is true or false. For example,
tcp.flags.syn is present in all TCP packets containing the flag, whether
the SYN flag is 0 or 1. To only match TCP packets with the SYN flag set, you need
to use tcp.flags.syn == 1 or tcp.flags.syn == True.

	
Ethernet address

	
6 bytes separated by a colon (:), dot (.), or dash (-) with one or two bytes between separators:
eth.dst == ff:ff:ff:ff:ff:ff

eth.dst == ff-ff-ff-ff-ff-ff

eth.dst == ffff.ffff.ffff

	
IPv4 address

	
ip.addr == 192.168.0.1
Classless InterDomain Routing (CIDR) notation can be used to test if
an IPv4 address is in a certain subnet. For example, this display
filter will find all packets in the 129.111 Class-B network:

ip.addr == 129.111.0.0/16

	
IPv6 address

	
ipv6.addr == ::1
As with IPv4 addresses, IPv6 addresses can match a subnet.

	
Text string

	
http.request.uri == "https://www.wireshark.org/"
Strings are a sequence of bytes. Functions like lower() use ASCII, otherwise
no particular encoding is assumed. String literals are specified with double
quotes. Characters can also be specified using a byte escape sequence using
hex \xhh or octal \ddd, where h and d are hex and octal
numerical digits respectively:

dns.qry.name contains "www.\x77\x69\x72\x65\x73\x68\x61\x72\x6b.org"

Alternatively, a raw string syntax can be used. Such strings are prefixed with r or R and treat
backslash as a literal character.

http.user_agent matches r"\(X11;"

	
Date and time

	
frame.time == "Sep 26, 2004 23:18:04.954975"
ntp.xmt ge "2020-07-04 12:34:56"

The value of an absolute time field is expressed as a string, using one of the
two formats above. Fractional seconds can be omitted or specified up to
nanosecond precision; extra trailing zeros are allowed but not other digits.
The string cannot take a time zone suffix, and is always parsed as in the local
time zone, even for fields that are displayed in UTC.

In the first format, the abbreviated month names must be in English regardless
of locale. In the second format, any number of time fields may be omitted, in
the order from least significant (seconds) to most, but at least the entire
date must be specified:

frame.time < "2022-01-01"

In the second format, a T may appear between the date and time as in
ISO 8601, but not when less significant times are dropped.

Some Examples

 udp contains 81:60:03

The display filter above matches packets that contains the 3-byte sequence 0x81, 0x60,
0x03 anywhere in the UDP header or payload.

 sip.To contains "a1762"

The display filter above matches packets where the SIP To-header contains the string "a1762"
anywhere in the header.

 http.host matches "acme\\.(org|com|net)"

The display filter above matches HTTP packets where the HOST header contains
acme.org, acme.com, or acme.net.
Comparisons are case-insensitive.

 tcp.flags & 0x02

That display filter will match all packets that contain the “tcp.flags” field with the 0x02 bit,
i.e., the SYN bit, set.

Possible Pitfalls Using Regular Expressions

 String literals containing regular expressions are parsed twice. Once by Wireshark’s display
filter engine and again by the PCRE2 library. It’s important to keep this in mind when using
the "matches" operator with regex escape sequences and special characters.

For example, the filter expression frame matches "AB\x43" uses the string "ABC" as input
pattern to PCRE. However, the expression frame matches "AB\\x43" uses the string "AB\x43"
as the pattern. In this case both expressions give the same result because Wireshark and PCRE
both support the same byte escape sequence (0x43 is the ASCII hex code for C).

An example where this fails badly is foo matches "bar\x28". Because 0x28 is the ASCII
code for (the pattern input to PCRE is "bar(". This regular expression is syntactically
invalid (missing closing parenthesis). To match a literal parenthesis in a display filter regular
expression it must be escaped (twice) with backslashes.

Using raw strings avoids most problem with the "matches" operator and double escape requirements.

Combining Expressions

 You can combine filter expressions in Wireshark using the logical operators shown in Display Filter Logical Operations

Table 24. Display Filter Logical Operations

	English
	C-like
	Description
	Example

	and

	&&

	Logical AND

	ip.src==10.0.0.5 and tcp.flags.fin

	or

	||

	Logical OR

	ip.src==10.0.0.5 or ip.src==192.1.1.1

	xor

	^^

	Logical XOR

	tr.dst[0:3] == 0.6.29 xor tr.src[0:3] == 0.6.29

	not

	!

	Logical NOT

	not llc

	[…​]

	
	Subsequence

	See “Slice Operator” below.

	in

	
	Set Membership

	http.request.method in {"HEAD", "GET"}. See “Membership Operator” below.

Slice Operator

 Wireshark allows you to select a subsequence of byte arrays (including
protocols) or text strings in rather elaborate ways. After a label you can
place a pair of brackets [] containing a comma separated list of range
specifiers.

 eth.src[0:3] == 00:00:83

The example above uses the n:m format to specify a single range. In this case n
is the beginning offset and m is the length of the range being specified.

 eth.src[1-2] == 00:83

The example above uses the n-m format to specify a single range. In this case n
is the beginning offset and m is the ending offset.

 eth.src[:4] == 00:00:83:00

The example above uses the :m format, which takes everything from the beginning
of a sequence to offset m. It is equivalent to 0:m

 eth.src[4:] == 20:20

The example above uses the n: format, which takes everything from offset n to
the end of the sequence.

 eth.src[2] == 83

The example above uses the n format to specify a single range. In this case the
element in the sequence at offset n is selected. This is equivalent to n:1.

 eth.src[0:3,1-2,:4,4:,2] ==
00:00:83:00:83:00:00:83:00:20:20:83

Wireshark allows you to string together single ranges in a comma separated list
to form compound ranges as shown above.

You can use the slice operator on a protocol name, too, to slice the
bytes associated with that protocol. The frame protocol can be useful,
encompassing all the captured data (not including secondary data sources
like decrypted data.)

Offsets can be negative, indicating an offset from the end of a field.

 frame[-4:4] == 0.1.2.3
frame[-4:] == 0.1.2.3

The two examples above both check the last four bytes of a frame.

Slices of string fields yield strings, and are indexed on codepoint
boundaries after conversion of the string to UTF-8, not bytes.

 http.content_type[0:4] == "text"
smpp.message_text[:10] == "Абвгдеёжзи"

The second example above will match regardless of whether the original
string was in Windows-1251, UTF-8, or UTF-16, so long as the converted
string starts with those ten characters.

Byte slices can be directly compared to strings; this converts the
string to the corresponding UTF-8 byte sequence. To compare string
slices with byte sequences, use the @ operator, below.

The Layer Operator

 A field can be restricted to a certain layer in the protocol stack using the
layer operator (#), followed by a decimal number:

ip.addr#2 == 192.168.30.40

matches only the inner (second) layer in the packet.
Layers use simple stacking semantics and protocol layers are counted sequentially starting from 1.
For example, in a packet that contains two IPv4 headers, the outer (first) source address can be matched with "ip.src#1" and the inner (second) source address can be matched with "ip.src#2".

For more complicated ranges the same syntax used with slices is valid:

tcp.port#[2-4]

means layers number 2, 3 or 4 inclusive. The hash symbol is required to
distinguish a layer range from a slice.

The At Operator

 By prefixing the field name with an at sign (@) the comparison is done against
the raw packet data for the field.

A character string must be decoded from a source encoding during dissection.
If there are decoding errors the resulting string will usually contain
replacement characters:

 browser.comment == "string is ����"

The at operator allows testing the raw undecoded data:

 @browser.comment == 73:74:72:69:6e:67:20:69:73:20:aa:aa:aa:aa

The syntactical rules for a bytes field type apply to the second example.

When a bytes field is compared with a literal string, it is compared
with the UTF-8 representation of that string. The at operator compares
a string field with the actual byte representation in the original encoding,
which may not be UTF-8.

As an example, SMPP has a bytes field, smpp.message, and a string
field, smpp.message_text, that refer to the same data. If the
first four characters of the message is the string "Text" in the UTF-16
encoding, the following filters all match.

 smpp.message[:8] == 00:54:00:65:00:73:00:74
smpp.message[:8] == "\x00T\x00e\x00s\x00t"
smpp.message_text[:4] == "Test"
smpp.message_text[:4] == "\x54\x65\x73\x74"
@smpp.message_text[:8] == 00:54:00:65:00:73:00:74
@smpp.message_text[:8] == "\x00T\x00e\x00s\x00t"

The following filters do NOT match.

 @smpp.message_text[:4] == "\x00T\x00e\x00s\x00t"
smpp.message[:4] == "Test"
smpp.message[:8] == "Test"
@smpp.message_text[:4] == "Test"
@smpp.message_text[:8] == "Test"

The first filter above does not match because of operator precedence
left-to-right; @smpp.message_text is converted to bytes before the
slice operator is applied, so the length of the necessary slice is 8.
The other filters do not match because the literal string "Test" is
always converted to its 4 octet UTF-8 representation when comparing
against bytes, and it does not match the UTF-16 representation of
the field bytes.

Membership Operator

 Wireshark allows you to test a field for membership in a set of values or
fields. After the field name, use the in operator followed by the set items
surrounded by braces {}. For example, to display packets with a TCP source or
destination port of 80, 443, or 8080, you can use tcp.port in {80, 443, 8080}.
Set elements must be separated by commas.
The set of values can also contain ranges: tcp.port in {443,4430..4434}.

The display filter

 tcp.port in {80, 443, 8080}

is equivalent to

 tcp.port == 80 || tcp.port == 443 || tcp.port == 8080

However, the display filter

 tcp.port in {443, 4430..4434}

is not equivalent to

 tcp.port == 443 || (tcp.port >= 4430 && tcp.port <= 4434)

This is because comparison operators are satisfied when any field
matches the filter, so a packet with a source port of 56789 and
destination port of port 80 would also match the second filter
since 56789 >= 4430 && 80 <= 4434 is true. In contrast, the
membership operator tests a single field against the range condition.

Sets are not just limited to numbers, other types can be used as well:

 http.request.method in {"HEAD", "GET"}
ip.addr in {10.0.0.5 .. 10.0.0.9, 192.168.1.1..192.168.1.9}
frame.time_delta in {10 .. 10.5}

Arithmetic operators

 You can perform the arithmetic operations on numeric fields shown in Display Filter Arithmetic Operations

Table 25. Display Filter Arithmetic Operations

	Name
	Syntax
	Alternative
	Description

	Unary minus

	-A

	
	Negation of A

	Addition

	A + B

	
	Add B to A

	Subtraction

	A - B

	
	Subtract B from A

	Multiplication

	A * B

	
	Multiply A times B

	Division

	A / B

	
	Divide A by B

	Modulo

	A % B

	
	Remainder of A divided by B

	Bitwise AND

	A & B

	A bitand B

	Bitwise AND of A and B

An unfortunate quirk in the filter syntax is that the subtraction
operator must be preceded by a space character, so "A-B" must be
written as "A -B" or "A - B".

Arithmetic expressions can be grouped using curly braces.

For example, frames where capture length resulted in truncated TCP options:

 frame.cap_len < { 14 + ip.hdr_len + tcp.hdr_len }

Functions

 The display filter language has a number of functions to convert fields, see
Display Filter Functions.

Table 26. Display Filter Functions

	Function
	Description

	upper

	Converts a string field to uppercase.

	lower

	Converts a string field to lowercase.

	len

	Returns the byte length of a string or bytes field.

	count

	Returns the number of field occurrences in a frame.

	string

	Converts a non-string field to a string.

	vals

	Converts a field value to its value string, if it has one.

	dec

	Converts an unsigned integer field to a decimal string.

	hex

	Converts an unsigned integer field to a hexadecimal string.

	float

	Converts a field to single precision floating point.

	double

	Converts a field to double precision floating point.

	max

	Return the maximum value for the arguments.

	min

	Return the minimum value for the arguments.

	abs

	Return the absolute value for the argument.

The upper and lower functions can used to force case-insensitive matches:
lower(http.server) contains "apache".

To find HTTP requests with long request URIs: len(http.request.uri) > 100.
Note that the len function yields the string length in bytes rather than
(multi-byte) characters.

Usually an IP frame has only two addresses (source and destination), but in case
of ICMP errors or tunneling, a single packet might contain even more addresses.
These packets can be found with count(ip.addr) > 2.

The string function converts a field value to a string, suitable for use with operators
like "matches" or "contains". Integer fields are converted to their decimal representation.
It can be used with IP/Ethernet addresses (as well as others), but not with string or
byte fields.

For example, to match odd frame numbers:

 string(frame.number) matches "[13579]$"

To match IP addresses ending in 255 in a block of subnets (172.16 to 172.31):

 string(ip.dst) matches r"^172\.(1[6-9]|2[0-9]|3[0-1])\.[0-9]{1,3}\.255"

The vals function converts an integer or boolean field value to a string
using the field’s associated value string, if it has one.

The double function converts certain field types to doubles, including
floats, doubles (a no-op), integers, booleans, times (absolute times are
converted to seconds since the UN*X epoch), and the special IEEE 11073
Personal Health Devices floating point formats. The results can be used
with further arithmetic operations and, like other filters, placed in a
custom column.

The functions max() and min() take any number of arguments of the same type
and returns the largest/smallest respectively of the set.

 max(tcp.srcport, tcp.dstport) <= 1024

Field References

 An expression of the form ${proto.field} is called a field reference.
Its value is read from the corresponding field in the currently selected
frame in the GUI. This is a powerful way to build dynamic filters, such
as frames since the last five minutes to the selected frame:

 frame.time_relative >= ${frame.time_relative} - 300

or all HTTP packets whose +ip.dst value equals the "A" record of
the DNS response in the current frame:

 http && ip.dst eq ${dns.a}

The notation of field references is similar to that of macros but they are
syntactically distinct. Field references, like other complex filters, make
excellent use cases for macros,
saved filters, and
filter buttons

Implicit type conversions

 In addition to the implicit conversion of string literals for comparison
with byte array fields (including protocols) mentioned above, integer
and boolean fields with value strings can be compared with one of the strings
that corresponds with a value.

If there is a unique reverse mapping from the string literal into a
numeric value, the string is converted into that number and the
comparison function is applied using arithmetic rules. If the mapping
is not unique, then equality and inequality can be tested, but not the
ordered comparisons.

This is in contrast with the string() and vals() functions, which
convert the field value to a string and applies string (lexicographic)
comparisons, as well as work with all operators that take strings.
Therefore the following two filters give the same result:

gtpv2.message_type <= 35
gtpv2.message_type <= "Modify Bearer Response"

whereas

vals(gtpv2.message_type) <= "Modify Bearer Response"

matches all messages whose value string precedes "Modify Bearer Response"
in lexicographical order, and

string(gtpv2.message_type) <= "35"

matches all messages such that the message type comes before "35" in
lexicographical order, i.e. would also match "170" (the message type
for "Release Access Bearers Request.")

For the "contains" and "matches" operators, which operate on strings
(or byte arrays in the case of "contains"), fields on the left hand
side are implicitly converted to their value strings for comparison.
(To compare a field with a byte array, use the raw/at (@) operator.)

Sometimes Fields Change Names

 As protocols evolve they sometimes change names or are superseded by
newer standards. For example, DHCP extends and has largely replaced
BOOTP and TLS has replaced SSL. If a protocol dissector originally used
the older names and fields for a protocol the Wireshark development team
might update it to use the newer names and fields. In such cases they
will add an alias from the old protocol name to the new one in order to
make the transition easier.

For example, the DHCP dissector was originally developed for the BOOTP
protocol but as of Wireshark 3.0 all of the “bootp” display filter
fields have been renamed to their “dhcp” equivalents. You can still use
the old filter names for the time being, e.g., “bootp.type” is equivalent
to “dhcp.type” but Wireshark will show the warning “"bootp" is deprecated”
when you use it. Support for the deprecated fields may be removed in the future.

Some protocol names can be ambiguous

 In some particular cases relational expressions (equal, less than, etc.)
can be ambiguous. The filter name of a protocol or protocol field can contain
any letter and digit in any order, possibly separated by dots. That can be
indistinguishable from a literal value (usually numerical values in hexadecimal).
For example the semantic value of fc can be the protocol Fibre Channel or the
number 0xFC in hexadecimal because the 0x prefix is optional for hexadecimal numbers.

Any value that matches a registered protocol or protocol field filter name is
interpreted semantically as such. If it doesn’t match a protocol name the normal
rules for parsing literal values apply.

So in the case of 'fc' the lexical token is interpreted as "Fibre Channel" and
not 0xFC. In the case of 'fd' it would be interpreted as 0xFD because it is a
well-formed hexadecimal literal value (according to the rules of display filter
language syntax) and there is no protocol registered with the filter name 'fd'.

How ambiguous values are interpreted may change in the future. To avoid this
problem and resolve the ambiguity there is additional syntax available.
Values prefixed with a dot are always treated as a protocol name. The
dot stands for the root of the protocol namespace and is optional). Values
prefixed with a colon are always interpreted as a byte array.

 frame[10:] contains .fc or frame[10] == :fc

If you are writing a script, or you think your expression may not be giving the
expected results because of the syntactical ambiguity of some filter expression
it is advisable to use the explicit syntax to indicate the correct meaning for
that expression.

The “Display Filter Expression” Dialog Box

 When you are accustomed to Wireshark’s filtering system and know what labels you
wish to use in your filters it can be very quick to simply type a filter string.
However, if you are new to Wireshark or are working with a slightly unfamiliar
protocol it can be very confusing to try to figure out what to type. The
“Display Filter Expression” dialog box helps with this.

The “Display Filter Expression” dialog box is an excellent way to learn how to write
Wireshark display filter strings.

[image: ws filter add expression]

Figure 62. The “Display Filter Expression” dialog box

When you first bring up the Display Filter Expression dialog box you are shown a tree
of field names, organized by protocol, and a box for selecting a relation.

	
Field Name

	
Select a protocol field from the protocol field tree. Every protocol with
filterable fields is listed at the top level. You can search for a particular
protocol entry by entering the first few letters of the protocol name. By
expanding a protocol name you can get a list of the field names available for
filtering for that protocol.

	
Relation

	
Select a relation from the list of available relation. The is present is a
unary relation which is true if the selected field is present in a packet. All
other listed relations are binary relations which require additional data (e.g.
a Value to match) to complete.
When you select a field from the field name list and select a binary relation
(such as the equality relation ==) you will be given the opportunity to enter a
value, and possibly some range information.

	
Value

	
You may enter an appropriate value in the Value text box. The Value will
also indicate the type of value for the Field Name you have selected (like
character string).

	
Predefined Values

	
Some of the protocol fields have predefined values available, much like enumerations
in C. If the selected protocol field has such values defined, you can choose one
of them here.

	
Search

	
Lets you search for a full or partial field name or description.
Regular expressions are supported.
For example, searching for “tcp.*flag” shows the TCP flags fields supported by a wide variety of dissectors, while “^tcp.flag” shows only the TCP flags fields supported by the TCP dissector.

	
Range

	
A range of integers or a group of ranges, such as 1-12 or 39-42,98-2000.

	
Help

	
Opens this section of the User’s Guide.

	
OK

	
When you have built a satisfactory expression click OK and a filter string
will be built for you.

	
Cancel

	
You can leave the “Add Expression…​” dialog box without any effect by
clicking the Cancel button.

Defining And Saving Filters

 You create pre-defined filters that appear in the capture and display filter bookmark menus ([image: filter toolbar bookmark]).
This can save time in remembering and retyping some of the more complex filters you use.

To create or edit capture filters, select Manage Capture Filters from the capture filter bookmark menu or Capture › Capture Filters…​ from the main menu.
Display filters can be created or edited by selecting Manage Display Filters from the display filter bookmark menu or Analyze › Display Filters…​ from the main menu.
Wireshark will open the corresponding dialog as shown in The “Capture Filters” and “Display Filters” dialog boxes.
The two dialogs look and work similar to one another.
Both are described here, and the differences are noted as needed.

[image: ws filters]

Figure 63. The “Capture Filters” and “Display Filters” dialog boxes

	
+

	
Adds a new filter to the list.
You can edit the filter name or expression by double-clicking on it.
The filter name is used in this dialog to identify the filter for your convenience and is not used elsewhere.
You can create multiple filters with the same name, but this is not very useful.

When typing in a filter string, the background color will change depending on the validity of the filter similar to the main capture and display filter toolbars.

	
-

	
Delete the selected filter.
This will be greyed out if no filter is selected.

	
Copy

	
Copy the selected filter.
This will be greyed out if no filter is selected.

	
OK

	
Saves the filter settings and closes the dialog.

	
Cancel

	
Closes the dialog without saving any changes.

Defining And Saving Filter Macros

 Display Filter Macros are a mechanism to create shortcuts for complex filters.
You can define a filter macro with Wireshark and label it for later use.
This can save time in remembering and retyping some of the more complex filters
you use.

To define and save your own filter macros, follow the steps below:

	
In the main menu select Analyze › Display Filter Macros…​. Wireshark will open a corresponding dialog Display Filter Macros window.

[image: ws filter macros]

Figure 64. Display Filter Macros window

	
To add a new filter macro, click the + button in the bottom-left corner. A new row will appear in the Display Filter Macros table above.

	
Enter the name of your macro in the Macro Name column. Enter your filter macro in the Macro Expression column.

	
To save your modifications, click the OK button in the bottom-right corner of the Display Filter Macros window.

Display Filter Macros syntax

 Display filter macros are invoked with the macro name and a number of
input arguments. There are several supported syntaxes.

The Macro Name must consist of ASCII alphanumerics or the '_' character.
(Note that the presence of a '.' character would indicate a
field reference.)

The Macro Expression is replacement text for the macro name. It substitutes
$1, $2, $3, …​ with the input arguments.

For example, defining a display filter macro named tcp_conv whose text is

 (ip.src == $1 and ip.dst == $2 and tcp.srcport == $3 and tcp.dstport == $4)
or (ip.src == $2 and ip.dst == $1 and tcp.srcport == $4 and tcp.dstport == $3)

would allow to use a display filter like

 $tcp_conv(10.1.1.2,10.1.1.3,1200,1400)

or alternatively

 ${tcp_conv:10.1.1.2;10.1.1.3;1200;1400}

or

 ${tcp_conv;10.1.1.2;10.1.1.3;1200;1400}

instead of typing the whole filter. Both notations are equivalent. Once defined, a macro can
be used in saved display (but not
capture) filters and filter buttons.

Finding Packets

 You can easily find packets once you have captured some packets or have
read in a previously saved capture file. Simply select Edit › Find
Packet…​ in the main menu. Wireshark will open a toolbar between the
main toolbar and the packet list shown in The “Find Packet” toolbar.

The “Find Packet” Toolbar

[image: ws find packet]

Figure 65. The “Find Packet” toolbar

You can search using the following criteria:

	
Display filter

	
Enter a display filter string into the text entry field and click the Find button.
+
For example, to find the three-way handshake for a connection from host 192.168.0.1, use the following filter string:

 ip.src==192.168.0.1 and tcp.flags.syn==1

The value to be found will be syntax checked while you type it in. If
the syntax check of your value succeeds, the background of the entry
field will turn green, if it fails, it will turn red. For more details
see Filtering Packets While Viewing

	
Hexadecimal Value

	
Search for a specific byte sequence in the packet data.
For example, use “ef:bb:bf” to find the next packet that contains the
UTF-8 byte order mark.

	
String

	
Find a string in the packet data, with various options.

	
Regular Expression

	
Search the packet data using Perl-compatible
regular expressions. PCRE patterns are beyond the scope of this
document, but typing “pcre test” into your favorite search engine
should return a number of sites that will help you test and explore
your expressions.

Go To A Specific Packet

 You can easily jump to specific packets with one of the menu items in
the Go menu.

The “Go Back” Command

 Go back in the packet history, works much like the page history in most
web browsers.

The “Go Forward” Command

 Go forward in the packet history, works much like the page history in
most web browsers.

The “Go to Packet” Toolbar

[image: ws goto packet]

Figure 66. The “Go To Packet” toolbar

This toolbar can be opened by selecting Go › Go to packet…​ from
the main menu. It appears between the main toolbar and the packet list,
similar to the ”Find Packet” toolbar.

When you enter a packet number and press Go to packet
Wireshark will jump to that packet.

The “Go to Corresponding Packet” Command

 If a protocol field is selected which points to another packet in the capture
file, this command will jump to that packet.

As these protocol fields now work like links (just as in your Web browser), it’s
easier to simply double-click on the field to jump to the corresponding field.

The “Go to First Packet” Command

 This command will jump to the first packet displayed.

The “Go to Last Packet” Command

 This command will jump to the last packet displayed.

Marking Packets

 You can mark packets in the “Packet List” pane. A marked packet will be shown
with black background, regardless of the coloring rules set. Marking a packet
can be useful to find it later while analyzing in a large capture file.

Marked packet information is not stored in the capture file or anywhere
else. It will be lost when the capture file is closed.

You can use packet marking to control the output of packets when saving,
exporting, or printing. To do so, an option in the packet range is available,
see The “Packet Range” Frame.

There are several ways to mark and unmark packets. From the Edit menu
you can select from the following:

	
Mark/Unmark Selected toggles the marked state of the current selection.
This option is also available in the packet list context menu.

	
Mark All Displayed set the mark state of all displayed packets.

	
Unmark All Displayed reset the mark state of all packets.

You can also mark and unmark a packet by clicking on it in the packet list
with the middle mouse button.

Ignoring Packets

 You can ignore packets in the “Packet List” pane. Wireshark will then
pretend that they not exist in the capture file. An ignored packet will
be shown with white background and grey foreground, regardless of the
coloring rules set.

Ignored packet information is not stored in the capture file or anywhere
else. It will be lost when the capture file is closed.

There are several ways to ignore and unignore packets. From the
Edit menu you can select from the following:

	
Ignore/Unignore Selected toggles the ignored state of the current selection.
This option is also available in the packet list context menu.

	
Ignore All Displayed set the ignored state of all displayed packets.

	
Unignore All Displayed reset the ignored state of all packets.

Time Display Formats And Time References

 While packets are captured, each packet is timestamped. These timestamps will be
saved to the capture file, so they will be available for later analysis.

A detailed description of timestamps, timezones and alike can be found at:
Time Stamps.

The timestamp presentation format and the precision in the packet list can be
chosen using the View menu, see The “View” Menu.

The available presentation formats are:

	
Date and Time of Day: 1970-01-01 01:02:03.123456 The absolute date and time
of the day when the packet was captured.

	
Time of Day: 01:02:03.123456 The absolute time of the day when the packet
was captured.

	
Seconds Since First Captured Packet: 123.123456 The time relative to the
start of the capture file or the first “Time Reference” before this packet
(see Packet Time Referencing).

	
Seconds Since Previous Captured Packet: 1.123456 The time relative to the
previous captured packet.

	
Seconds Since Previous Displayed Packet: 1.123456 The time relative to the
previous displayed packet.

	
Seconds Since Epoch (1970-01-01): 1234567890.123456 The time relative to
epoch (midnight UTC of January 1, 1970).

The available precisions (aka. the number of displayed decimal places) are:

	
Automatic (from capture file) The timestamp precision of the loaded capture file format will be
used (the default).

	
Seconds, Tenths of a second, Hundredths of a second,
Milliseconds, Microseconds or Nanoseconds The
timestamp precision will be forced to the given setting. If the
actually available precision is smaller, zeros will be appended. If
the precision is larger, the remaining decimal places will be cut off.

Precision example: If you have a timestamp and it’s displayed using, “Seconds
Since Previous Packet” the value might be 1.123456. This will be displayed
using the “Automatic” setting for libpcap files (which is microseconds). If
you use Seconds it would show simply 1 and if you use Nanoseconds it shows
1.123456000.

Packet Time Referencing

 The user can set time references to packets. A time reference is the starting
point for all subsequent packet time calculations. It will be useful, if you
want to see the time values relative to a special packet, e.g., the start of a
new request. It’s possible to set multiple time references in the capture file.

The time references will not be saved permanently and will be lost when you
close the capture file.

Time referencing supercedes the value for the time relative to first
capture packet. It affects the default Time column if the time display
format is set to “Seconds Since First Captured Packet”, or a “Relative Time”
column if one has been added. It also affects the frame.time_relative field.

To work with time references, choose one of the Time Reference items in
the menu:[Edit] menu or from the pop-up menu of the “Packet List” pane. See
The “Edit” Menu.

	
Set Time Reference (toggle) Toggles the time reference state of the
currently selected packet to on or off.

	
Find Next Find the next time referenced packet in the “Packet List” pane.

	
Find Previous Find the previous time referenced packet in the “Packet
List” pane.

[image: ws time reference]

Figure 67. Wireshark showing a time referenced packet

A time referenced packet will be marked with the string *REF* in the Time
column (see packet number 10). All subsequent packets will show the time since
the last time reference. If there is a column displayed for “Cumulative Bytes”
its counter will also reset at every time reference packet.
Somewhat odd that cumulative bytes also resets.

Time referenced packets will always be displayed in the packet list pane.
Display filters will not affect or hide these packets.

Time Shifting Packets

 Sometimes you will want to adjust the timestamps in a capture file.
This may be because a machine performing the capture had an inaccurate
clock, or because the capture was originally saved with timestamps in
local time (perhaps even to a capture file format
that only writes times in local time, or only writes the time of day
but not the date). One common use is to synchronize timestamps between
captures made on different machines with relative clock skew or clock
drift before merging them. Selecting
Edit › Time Shift…​ from the main menu opens the "Time Shift" dialog.

[image: ws time shift]

Figure 68. The “Time Shift” dialog

	
Shift all packets by…​

	
Apply a fixed offset, entered as a relative time in hours, minutes,
and seconds, to the timestamps for all packets. This is useful for
correcting small known errors or timezones.

	
Set the time for packet…​

	
Apply offsets based on one or, if the box is checked, two given packets
to the timestamps for all packets. Enter the packet number and absolute
date and time for the packet(s). When one packet is used, a fixed offset
is applied that can be used to correct for clock skew. When two packets
are used, the correction for all other packets is computed linearly,
which can be used to correct for clock drift. This is useful when the
precise date and time for particular packets are known, e.g. packets
containing the NTP or PTP protocols.

	
Undo all shifts

	
This removes all unsaved time shifts from packets.

Time shifts are applied to all packets

Time shifts are applied to all packets in the capture, including
ignored packets and packets that are not displayed due to the current
filter.
Wireshark does not have a method to adjust the timestamps of individual
or selected packets.

The offset currently applied to time shifted packets is in the
frame.offset_shift field, which can be viewed in the packet details.

[image: ws time shift details]

Figure 69. A Time Shifted Packet

After time shifts are applied, the file will have unsaved changes,
which are indicated with an * beside its name in the title bar.
Beginning with Wireshark 4.2.0, saving the file
will write the corrected timestamps to the capture file.
If you attempt to close the capture file without saving it, a dialog
will prompt you to save in order to prevent losing your changes
(unless that warning has been disabled in the preferences.)

Advanced Topics

Introduction

 This chapter will describe some of Wireshark’s advanced features.

Following Protocol Streams

 It can be very helpful to see a protocol in the way that the application
layer sees it. Perhaps you are looking for passwords in a Telnet stream,
or you are trying to make sense of a data stream. Maybe you just need a
display filter to show only the packets in a TLS or SSL stream. If so,
Wireshark’s ability to follow protocol streams will be useful to you.

To filter to a particular stream,
select a packet in the packet list of the stream/connection you are
interested in and then select the menu item you want under Analyze › Follow
(or in the context menu in the packet list). Wireshark will set an
appropriate display filter and display a dialog box with the data from the
stream laid out, as shown in The “Follow TCP Stream” dialog box.

Following a protocol stream applies a display filter which selects all
the packets in the current stream. Some people open the “Follow TCP
Stream” dialog and immediately close it as a quick way to isolate a
particular stream. Closing the dialog with the “Back” button will reset
the display filter if this behavior is not desired.

Wireshark supports following the streams of many different protocols, including
TCP, UDP, DCCP, TLS, HTTP, HTTP/2, QUIC, WebSocket, SIP, and USB CDC.
The dialog for following TCP streams is covered in detail here;
most other supported protocols will show dialogs which are very similar.

If the type of stream you wish to follow is disabled or missing from the menu,
Wireshark did not find the respective protocol in the currently selected packet.

To follow TLS or SSL streams, see the wiki page on
TLS for instructions
on providing TLS keys.

[image: ws follow stream]

Figure 70. The “Follow TCP Stream” dialog box

The stream content is displayed in the same sequence as it appeared on the
network. Non-printable characters are replaced by dots.
Traffic from the client to the server is colored red, while traffic
from the server to the client is
colored blue. These colors can be changed by opening Edit › Preferences and
under Appearance › Font and Colors, selecting different colors for the
Sample "Follow Stream" client text and Sample "Follow Stream" server text
options.

The stream content won’t be updated while doing a live capture. To get the
latest content you’ll have to reopen the dialog.

You can choose from the following actions:

	
Help

	
Show this help.

	
Filter out this stream

	
Apply a display filter removing the current
stream data from the display.

	
Print

	
Print the stream data in the currently selected format.

	
Save as…​

	
Save the stream data in the currently selected format.

	
Back

	
Close this dialog box and restore the previous display filter.

	
Close

	
Close this dialog box, leaving the current display filter in
effect.

By default, Wireshark displays both client and server data. You can select the
Entire conversation to switch between both, client to server, or
server to client data.

You can choose to view the data in one of the following formats:

	
ASCII

	
In this view you see the data from each direction in ASCII.
Obviously best for ASCII based protocols, e.g., HTTP.

	
C Arrays

	
This allows you to import the stream data into your own C
program.

	
EBCDIC

	
For the big-iron freaks out there.

	
HEX Dump

	
This allows you to see all the data. This will require a lot of
screen space and is best used with binary protocols.

	
UTF-8

	
Like ASCII, but decode the data as UTF-8.

	
UTF-16

	
Like ASCII, but decode the data as UTF-16.

	
YAML

	
This allows you to load the stream as YAML.

The YAML output is divided into 2 main sections:

	
The peers section where for each peer you found the peer index, the host address and the port number.

	
The packets section where for each packet you found the packet number in the original capture, the peer index,
the packet index for this peer, the timestamp in seconds and the data in base64 encoding.

Example 3. Follow Stream YAML output

 peers:
 - peer: 0
 host: 127.0.0.1
 port: 54048
 - peer: 1
 host: 127.0.10.1
 port: 5000
packets:
 - packet: 1
 peer: 0
 index: 0
 timestamp: 1599485409.693955274
 data: !!binary |
 aGVsbG8K
 - packet: 3
 peer: 1
 index: 0
 timestamp: 1599485423.885866692
 data: !!binary |
 Ym9uam91cgo=

The same example but in old YAML format (before version 3.5):

 # Packet 1
peer0_0: !!binary |
 aGVsbG8K
Packet 3
peer1_0: !!binary |
 Ym9uam91cgo=

How the old format data can be found in the new format:

	New YAML format
	Old YAML format
	

	
 ...
packets:
 - packet: AAA
 peer: BBB
 index: CCC
 data: !!binary |
 DDD

	
 # Packet AAA
peerBBB_CCC !!binary |
 DDD

	

AAA: packet number in the original capture
BBB: peer index
CCC: packet index for this peer
DDD: data in base64 encoding

	
Raw

	
This allows you to load the unaltered stream data into a different
program for further examination. The display will show the data as strings
of hex characters with each frame on a separate line, but “Save As”
will result in a binary file without any added line separators.

You can optionally show the delta time each time the direction changes (turns) or for every packet or event.

You can switch between streams using the “Stream” selector.

You can search for text by entering it in the “Find” entry box and
pressing Find Next.

[image: ws follow http2 stream]

Figure 71. The “Follow HTTP/2 Stream” dialog box

The HTTP/2 Stream dialog is similar to the "Follow TCP Stream" dialog, except
for an additional "Substream" dialog field. HTTP/2 Streams are identified by
a HTTP/2 Stream Index (field name http2.streamid) which are unique within a
TCP connection. The “Stream” selector determines the TCP connection whereas the
“Substream” selector is used to pick the HTTP/2 Stream ID.

The QUIC protocol is similar, the first number selects the QUIC connection number
while the "Substream" field selects the QUIC Stream ID.

[image: ws follow sip stream]

Figure 72. The “Follow SIP Call” dialog box

The SIP call is shown with same dialog, just filter is based on sip.Call-ID
field. Count of streams is fixed to 0 and the field is disabled.

Show Packet Bytes

 If a selected packet field does not show all the bytes (i.e., they are truncated
when displayed) or if they are shown as bytes rather than string or if they require
more formatting because they contain an image or HTML then this dialog can be used.

This dialog can also be used to decode field bytes from base64, various compressed
formats or quoted-printable and show the decoded bytes as configurable output.
It’s also possible to select a subset of bytes setting the start byte and end byte.

You can choose from the following actions:

	
Help

	
Show this help.

	
Print

	
Print the bytes in the currently selected format.

	
Copy

	
Copy the bytes to the clipboard in the currently selected format.

	
Save As

	
Save the bytes in the currently selected format.

	
Close

	
Close this dialog box.

You can choose to decode the data from one of the following formats:

	
None

	
This is the default which does not decode anything.

	
Base64

	
This will decode from Base64 or Base64Url.

	
Compressed

	
This will decompress the buffer using lz77, lz77huff, lznt1, snappy, zlib or zstd.

	
Hex Digits

	
This will decode from a string of hex digits. Non-hex characters are skipped.

	
Percent-Encoding

	
This will decode from a Percent-Encoded string.

	
Quoted-Printable

	
This will decode from a Quoted-Printable string.

	
ROT-13

	
This will decode ROT-13 encoded text.

You can choose to view the data in one of the following formats:

	
ASCII

	
In this view you see the bytes as ASCII.
All control characters and non-ASCII bytes are replaced by dot.

	
ASCII & Control

	
In this view all control characters are shown using a
UTF-8 symbol and all non-ASCII bytes are replaced by dot.

	
C Array

	
This allows you to import the field data into your own C program.

	
EBCDIC

	
For the big-iron freaks out there.

	
Hex Dump

	
This allows you to see all the data. This will require a lot of
screen space and is best used with binary protocols.

	
HTML

	
This allows you to see all the data formatted as a HTML document.
The HTML supported is what’s supported by the Qt QTextEdit class.

	
Image

	
This will try to convert the bytes into an image.
Most popular formats are supported including PNG, JPEG, GIF, and BMP.

	
ISO 8859-1

	
In this view you see the bytes as ISO 8859-1.

	
Raw

	
This allows you to load the bytes into a different
program for further examination. The display will show HEX data, but
“Save As” will result in a binary file.

	
UTF-8

	
In this view you see the bytes as UTF-8.

	
UTF-16

	
In this view you see the bytes as UTF-16.

	
YAML

	
This will show the bytes as a YAML binary dump.

You can search for text by entering it in the “Find” entry box and
pressing Find Next.

Expert Information

 Wireshark keeps track of any anomalies and other items of interest it finds in a capture file and shows them in the Expert Information dialog.
The goal is to give you a better idea of uncommon or notable network behavior and to let novice and expert users find network problems faster than manually scanning through the packet list.

Expert information is only a hint

Expert information is the starting point for investigation, not the stopping point.
Every network is different, and it’s up to you to verify that Wireshark’s expert information applies to your particular situation.
The presence of expert information doesn’t necessarily indicate a problem and absence of expert information doesn’t necessarily mean everything is OK.

The amount of expert information largely depends on the protocol being used.
While dissectors for some common protocols like TCP and IP will show detailed information, other dissectors will show little or none.

The following describes the components of a single expert information entry along with the expert user interface.

Expert Information Entries

 Expert information entries are grouped by severity level (described below) and contain the following:

Table 27. Example expert information items

	Packet #
	Summary
	Group
	Protocol

	592

	TCP: [TCP Out-Of-Order] …​

	Malformed

	TCP

	1202

	DNS: Standard query response …​

	Protocol

	DNS

	443

	TCP: 80 → 59322 [RST] Seq=12761 Win=0 Len=0

	Sequence

	TCP

Severity

 Every expert information item has a severity level.
The following levels are used, from lowest to highest.
Wireshark marks them using different colors, which are shown in parentheses:

	
Chat (blue)

	
Information about usual workflow, e.g., a TCP packet with the SYN flag set.

	
Note (cyan)

	
Notable events, e.g., an application returned a common error code such as HTTP 404.

	
Warn (yellow)

	
Warnings, e.g., application returned an unusual error code like a connection problem.

	
Error (red)

	
Serious problems, such as malformed packets.

Summary

 Short explanatory text for each expert information item.

Group

 Along with severity levels, expert information items are categorized by group.
The following groups are currently implemented:

	
Assumption

	
The protocol field has incomplete data and was dissected based on assumed value.

	
Checksum

	
A checksum was invalid.

	
Comment

	
Packet comment.

	
Debug

	
Debugging information.
You shouldn’t see this group in release versions of Wireshark.

	
Decryption

	
A decryption issue.

	
Deprecated

	
The protocol field has been deprecated.

	
Malformed

	
Malformed packet or dissector has a bug.
Dissection of this packet aborted.

	
Protocol

	
Violation of a protocol’s specification (e.g., invalid field values or illegal lengths).
Dissection of this packet probably continued.

	
Reassemble

	
Problems while reassembling, e.g., not all fragments were available or an exception happened during reassembly.

	
Request Code

	
An application request (e.g., File Handle == x). Usually assigned the Chat severity level.

	
Response Code

	
An application response code indicates a potential problem, e.g., HTTP 404 page not found.

	
Security

	
A security problem, e.g., an insecure implementation.

	
Sequence

	
A protocol sequence number was suspicious, e.g., it wasn’t continuous or a retransmission was detected.

	
Undecoded

	
Dissection incomplete or data can’t be decoded for other reasons.

It’s possible that more groups will be added in the future.

Protocol

 The protocol dissector that created the expert information item.

The “Expert Information” Dialog

 You can open the expert info dialog by selecting Analyze › Expert Info or by clicking the expert level indicator in the main status bar.

Right-clicking on an item will allow you to apply or prepare a filter based on the item, copy its summary text, and other tasks.

[image: ws expert information]

Figure 73. The “Expert Information” dialog box

You can choose from the following actions:

	
Limit to display filter

	
Only show expert information items present in packets that match the current display filter.

	
Group by summary

	
Group items by their summary instead of the groups described above.

	
Search

	
Only show items that match the search string, such as “dns”.
Regular expressions are supported.

	
Show…​

	
Lets you show or hide each severity level.
For example, you can deselect Chat and Note severities if desired.

	
Help

	
Takes you to this section of the User’s Guide.

	
Close

	
Closes the dialog

“Colorized” Protocol Details Tree

[image: ws expert colored tree]

Figure 74. The “Colorized” protocol details tree

The packet detail tree marks fields with expert information based on their severity level color, e.g., “Warning” severities have a yellow background.
This color is propagated to the top-level protocol item in the tree in order to make it easy to find the field that created the expert information.

For the example screenshot above, the IP “Time to live” value is very low (only 1), so the corresponding protocol field is marked with a cyan background.
To make it easier find that item in the packet tree, the IP protocol toplevel item is marked cyan as well.

“Expert” Packet List Column (Optional)

[image: ws expert column]

Figure 75. The “Expert” packet list column

An optional “Expert Info Severity” packet list column is available that
displays the most significant severity of a packet or stays empty if everything
seems OK. This column is not displayed by default but can be easily added using
the Preferences Columns page described in Preferences.

TCP Analysis

 By default, Wireshark’s TCP dissector tracks the state of each TCP
session and provides additional information when problems or potential
problems are detected. Analysis is done once for each TCP packet when a
capture file is first opened. Packets are processed in the order in
which they appear in the packet list. You can enable or disable this
feature via the “Analyze TCP sequence numbers” TCP dissector preference.

For analysis of data or protocols layered on top of TCP (such as HTTP), see
TCP Reassembly.

[image: ws tcp analysis]

Figure 76. “TCP Analysis” packet detail items

TCP Analysis flags are added to the TCP protocol tree under “SEQ/ACK
analysis”. Each flag is described below. Terms such as “next expected
sequence number” and “next expected acknowledgment number” refer to
the following”:

	
Next expected sequence number

	
The last-seen sequence number plus
segment length. Set when there are no analysis flags and for zero
window probes. This is initially zero and calculated based on the
previous packet in the same TCP flow. Note that this may not be the same
as the tcp.nxtseq protocol field.

	
Next expected acknowledgment number

	
The last-seen sequence number for
segments. Set when there are no analysis flags and for zero window probes.

	
Last-seen acknowledgment number

	
Always updated for each packet. Note
that this is not the same as the next expected acknowledgment number.

TCP ACKed unseen segment

Set when the expected next acknowledgment number is set for the reverse
direction and it’s less than the current acknowledgment number.

TCP Dup ACK <frame>#<acknowledgment number>

Set when all of the following are true:

	
The segment size is zero.

	
The window size is non-zero and hasn’t changed, or there is valid SACK data.

	
The next expected sequence number and last-seen acknowledgment number are non-zero (i.e., the connection has been established).

	
SYN, FIN, and RST are not set.

TCP Fast Retransmission

Set when all of the following are true:

	
This is not a keepalive packet.

	
In the forward direction, the segment size is greater than zero or the SYN or FIN is set.

	
The next expected sequence number is greater than the current sequence number.

	
We have at least two duplicate ACKs in the reverse direction.

	
The current sequence number equals the next expected acknowledgment number.

	
We saw the last acknowledgment less than 20ms ago.

Supersedes “Out-Of-Order” and “Retransmission”.

TCP Keep-Alive

Set when the segment size is zero or one, the current sequence number
is one byte less than the next expected sequence number, and none of SYN,
FIN, or RST are set.

Supersedes “Fast Retransmission”, “Out-Of-Order”, “Spurious
Retransmission”, and “Retransmission”.

TCP Keep-Alive ACK

Set when all of the following are true:

	
The segment size is zero.

	
The window size is non-zero and hasn’t changed.

	
The current sequence number is the same as the next expected sequence number.

	
The current acknowledgment number is the same as the last-seen acknowledgment number.

	
The most recently seen packet in the reverse direction was a keepalive.

	
The packet is not a SYN, FIN, or RST.

Supersedes “Dup ACK” and “ZeroWindowProbeAck”.

TCP Out-Of-Order

Set when all of the following are true:

	
This is not a keepalive packet.

	
In the forward direction, the segment length is greater than zero or the SYN or FIN is set.

	
The next expected sequence number is greater than the current sequence number.

	
The next expected sequence number and the next sequence number differ.

	
The last segment arrived within the Out-Of-Order RTT threshold.
The threshold is either the value shown in the “iRTT” (tcp.analysis.initial_rtt) field under “SEQ/ACK analysis” if it is present, or the default value of 3ms if it is not.

Supersedes “Retransmission”.

TCP Port numbers reused

Set when the SYN flag is set (not SYN+ACK), we have an existing conversation using the same addresses and ports, and the sequence number is different than the existing conversation’s initial sequence number.

TCP Previous segment not captured

Set when the current sequence number is greater than the next expected sequence number.

TCP Spurious Retransmission

Checks for a retransmission based on analysis data in the reverse
direction. Set when all of the following are true:

	
The SYN and FIN flags are not set.

	
This is not a keepalive packet.

	
The segment length is greater than zero.

	
Data for this flow has been acknowledged. That is, the last-seen acknowledgment number has been set.

	
The next sequence number is less than or equal to the last-seen acknowledgment number.

Supersedes “Fast Retransmission”, “Out-Of-Order”, and “Retransmission”.

TCP Retransmission

Set when all of the following are true:

	
This is not a keepalive packet.

	
In the forward direction, the segment length is greater than zero or the SYN or FIN flag is set.

	
The next expected sequence number is greater than the current sequence number.

TCP Window Full

Set when the segment size is non-zero, we know the window size in the
reverse direction, and our segment size exceeds the window size in the
reverse direction.

TCP Window Update

Set when the all of the following are true:

	
The segment size is zero.

	
The window size is non-zero and not equal to the last-seen window size, and there is no valid SACK data.

	
The sequence number is equal to the next expected sequence number.

	
The acknowledgment number is equal to the last-seen acknowledgment number,

	
or to the next expected sequence number when answering to a ZeroWindowProbe.

	
None of SYN, FIN, or RST are set.

TCP ZeroWindow

Set when the receive window size is zero and none of SYN, FIN, or RST are set.

The window field in each TCP header advertises the amount of data a receiver can accept.
If the receiver can’t accept any more data it will set the window value to zero, which tells the sender to pause its transmission.
In some specific cases this is normal — for example, a printer might use a zero window to pause the transmission of a print job while it loads or reverses a sheet of paper.
However, in most cases this indicates a performance or capacity problem on the receiving end.
It might take a long time (sometimes several minutes) to resume a paused connection, even if the underlying condition that caused the zero window clears up quickly.

TCP ZeroWindowProbe

Set when the sequence number is equal to the next expected sequence
number, the segment size is one, and last-seen window size in the
reverse direction was zero.

If the single data byte from a Zero Window Probe is dropped by the receiver (not
ACKed), then a subsequent segment should not be flagged as retransmission if all
of the following conditions are true for that segment:
* The segment size is larger than one.
* The next expected sequence number is one less than the current sequence number.

This affects “Fast Retransmission”, “Out-Of-Order”, or “Retransmission”.

TCP ZeroWindowProbeAck

Set when the all of the following are true:

	
The segment size is zero.

	
The window size is zero.

	
The sequence number is equal to the next expected sequence number.

	
The acknowledgment number is equal to the last-seen acknowledgment number.

	
The last-seen packet in the reverse direction was a zero window probe.

Supersedes “TCP Dup ACK”.

TCP Ambiguous Interpretations

Some captures are quite difficult to analyze automatically, particularly when the
time frame may cover both Fast Retransmission and Out-Of-Order packets. A TCP
preference allows to switch the precedence of these two interpretations at the
protocol level.

TCP Conversation Completeness

TCP conversations are said to be complete when they have both opening and closing
handshakes, independently of any data transfer. However, we might be interested in
identifying complete conversations with some data sent, and we are using the
following bit values to build a filter value on the tcp.completeness field :

	
1 : SYN

	
2 : SYN-ACK

	
4 : ACK

	
8 : DATA

	
16 : FIN

	
32 : RST

For example, a conversation containing only a three-way handshake will be found
with the filter 'tcp.completeness==7' (1+2+4) while a complete conversation with
data transfer will be found with a longer filter as closing a connection can be
associated with FIN or RST packets, or even both :
'tcp.completeness==31 or tcp.completeness==47 or tcp.completeness==63'

Another way to select specific conversation values is to filter on individual
flags, the summary field, or a combination of them.
Thus, '(tcp.completeness.fin==1 || tcp.completeness.rst==1) && tcp.completeness.str contains "DASS"'
will find all 'Complete, WITH_DATA' conversations, while the 'Complete, NO_DATA'
ones will be found with
'(tcp.completeness.fin==1 || tcp.completeness.rst==1) && tcp.completeness.data==0 && tcp.completeness.str contains "ASS"'.

TCP Streams Contiguities

The fields "tcp.stream.client.contiguity_count" and
"tcp.stream.server.contiguity_count" track the discontinuities of the two TCP streams
of a conversation.
Any number other than 1 says that either there is no TCP segment at all (0), or that
some data is missing (2+). We are only counting the 100 first discontinuities as in
most of cases it’s enough to conclude the capture cannot be used for data extraction
or there was a serious capture issue.

Time Stamps

 Time stamps, their precisions and all that can be quite confusing. This section
will provide you with information about what’s going on while Wireshark
processes time stamps.

While packets are captured, each packet is time stamped as it comes in. These
time stamps will be saved to the capture file, so they also will be available
for (later) analysis.

So where do these time stamps come from? While capturing, Wireshark gets the
time stamps from the libpcap (Npcap) library, which in turn gets them from the
operating system kernel. If the capture data is loaded from a capture file,
Wireshark obviously gets the data from that file.

Wireshark Internals

 The internal format that Wireshark uses to keep a packet time stamp consists of
the date (in days since 1.1.1970) and the time of day (in nanoseconds since
midnight). You can adjust the way Wireshark displays the time stamp data in the
packet list, see the “Time Display Format” item in the
The “View” Menu for details.

While reading or writing capture files, Wireshark converts the time stamp data
between the capture file format and the internal format as required.

While capturing, Wireshark uses the libpcap (Npcap) capture library which
supports nanosecond resolution for both pcapng and pcap files, though some
devices may only provide microsecond resolution, in which case that will be
used. Unless you are working with specialized capturing hardware, this
resolution should be adequate.

Capture File Formats

 The vast majority of capture file formats that Wireshark knows support time
stamps. The time stamp precision supported by a specific capture file format
differs widely and varies from one second “0” to one nanosecond “0.123456789”.
Most file formats store the time stamps with a fixed precision (e.g., microseconds,
“0.123456”), while some file formats are capable of storing the time stamp
precision itself or even having a different precision for different records
in the file (whatever the benefit may be).

The pcapng capture file format supports a wide range of time stamp resolutions,
which can be different for each interface in the file, as well as records without
time stamps. The common libpcap capture file format, which is widely supported by
many other tools, supports two possible fixed resolutions, microsecond or
nanosecond, indicated by a magic number at the start of the file. Wireshark and
tools like editcap can convert pcap files with nanosecond resolution to microsecond
resolution for use with tools that only support the original time stamp precision.

Writing data into a capture file format that doesn’t provide the capability to
store the actual precision will lead to loss of information. For example, if you
load a capture file with nanosecond resolution and store the capture data in a
libpcap file (with microsecond resolution) Wireshark obviously must reduce the
precision from nanosecond to microsecond.

Accuracy

 People often ask “Which time stamp accuracy is provided by Wireshark?”. Well,
Wireshark doesn’t create any time stamps itself but simply gets them from
“somewhere else” and displays them. So accuracy will depend on the capture
system (operating system, performance, etc.) that you use. Because of this, the
above question is difficult to answer in a general way.

USB connected network adapters often provide a very bad time stamp accuracy. The
incoming packets have to take “a long and winding road” to travel through the
USB cable until they actually reach the kernel. As the incoming packets are time
stamped when they are processed by the kernel, this time stamping mechanism
becomes very inaccurate.

Don’t use USB connected NICs when you need precise time stamp
accuracy.

Time Zones

 If you travel across the planet, time zones can be confusing. If you get a
capture file from somewhere around the world time zones can even be a lot more
confusing ;-)

First of all, there are two reasons why you may not need to think about time
zones at all:

	
You are only interested in the time differences between the packet time stamps
and don’t need to know the exact date and time of the captured packets (which
is often the case).

	
You don’t get capture files from different time zones than your own, so there
are simply no time zone problems. For example, everyone in your team is
working in the same time zone as yourself.

What are time zones?

People expect that the time reflects the sunset. Dawn should be in the morning
maybe around 06:00 and dusk in the evening maybe at 20:00. These times will
obviously vary depending on the season. It would be very confusing if everyone
on earth would use the same global time as this would correspond to the sunset
only at a small part of the world.

For that reason, the earth is split into several different time zones, each zone
with a local time that corresponds to the local sunset.

The time zone’s base time is UTC (Coordinated Universal Time) or Zulu Time
(military and aviation). The older term GMT (Greenwich Mean Time) shouldn’t be
used as it is slightly incorrect (up to 0.9 seconds difference to UTC). The UTC
base time equals to 0 (based at Greenwich, England) and all time zones have an
offset to UTC between -12 to +14 hours!

For example: If you live in Berlin, you are in a time zone one hour earlier than
UTC, so you are in time zone “+1” (time difference in hours compared to UTC).
If it’s 3 o’clock in Berlin it’s 2 o’clock in UTC “at the same moment”.

Be aware that at a few places on earth don’t use time zones with even hour
offsets (e.g., New Delhi uses UTC+05:30)!

Further information can be found at: https://en.wikipedia.org/wiki/Time_zone and
https://en.wikipedia.org/wiki/Coordinated_Universal_Time.

What is daylight saving time (DST)?

Daylight Saving Time (DST), also known as Summer Time is intended to “save”
some daylight during the summer months. To do this, a lot of countries (but not
all!) add a DST hour to the already existing UTC offset. So you may need to take
another hour (or in very rare cases even two hours!) difference into your “time
zone calculations”.

Unfortunately, the date at which DST actually takes effect is different
throughout the world. You may also note, that the northern and southern
hemispheres have opposite DST’s (e.g., while it’s summer in Europe it’s winter in
Australia).

Keep in mind: UTC remains the same all year around, regardless of DST!

Further information can be found at
https://en.wikipedia.org/wiki/Daylight_saving.

Further time zone and DST information can be found at
https://wwp.greenwichmeantime.com/ and https://www.timeanddate.com/worldclock/.

Set your computer’s time correctly!

If you work with people around the world it’s very helpful to set your
computer’s time and time zone right.

You should set your computers time and time zone in the correct sequence:

	
Set your time zone to your current location

	
Set your computer’s clock to the local time

This way you will tell your computer both the local time and also the time
offset to UTC. Many organizations simply set the time zone on their servers and
networking gear to UTC in order to make coordination and troubleshooting easier.

If you travel around the world, it’s an often-made mistake to adjust the hours
of your computer clock to the local time. Don’t adjust the hours but your time
zone setting instead! For your computer, the time is essentially the same as
before, you are simply in a different time zone with a different local time.

You can use the Network Time Protocol (NTP) to automatically adjust your
computer to the correct time, by synchronizing it to Internet NTP clock servers.
NTP clients are available for all operating systems that Wireshark supports (and
for a lot more), for examples see http://www.ntp.org/.

Wireshark and Time Zones

 So what’s the relationship between Wireshark and time zones anyway?

Wireshark’s native capture file format (libpcap format), and some
other capture file formats, such as the Windows Sniffer, *Peek, Sun
snoop formats, and newer versions of the Microsoft Network Monitor and
Network Instruments/Viavi Observer formats, save the arrival time of
packets as UTC values. UN*X systems, and “Windows NT based” systems
represent time internally as UTC. When Wireshark is capturing, no
conversion is necessary. However, if the system time zone is not set
correctly, the system’s UTC time might not be correctly set even if
the system clock appears to display correct local time. When capturing,
Npcap has to convert the time to UTC before supplying it to Wireshark.
If the system’s time zone is not set correctly, that conversion will
not be done correctly.

Other capture file formats, such as the OOS-based Sniffer format and
older versions of the Microsoft Network Monitor and Network
Instruments/Viavi Observer formats, save the arrival time of packets as
local time values.

Internally to Wireshark, time stamps are represented in UTC. This means that
when reading capture files that save the arrival time of packets as local time
values, Wireshark must convert those local time values to UTC values.

Wireshark in turn will display the time stamps always in local time. The
displaying computer will convert them from UTC to local time and displays this
(local) time. For capture files saving the arrival time of packets as UTC
values, this means that the arrival time will be displayed as the local time in
your time zone, which might not be the same as the arrival time in the time zone
in which the packet was captured. For capture files saving the arrival time of
packets as local time values, the conversion to UTC will be done using your time
zone’s offset from UTC and DST rules, which means the conversion will not be
done correctly; the conversion back to local time for display might undo this
correctly, in which case the arrival time will be displayed as the arrival time
in which the packet was captured.

Table 28. Time zone examples for UTC arrival times (without DST)

	
	Los Angeles
	New York
	Madrid
	London
	Berlin
	Tokyo

	Capture File (UTC)

	10:00

	10:00

	10:00

	10:00

	10:00

	10:00

	Local Offset to UTC

	-8

	-5

	-1

	0

	+1

	+9

	Displayed Time (Local Time)

	02:00

	05:00

	09:00

	10:00

	11:00

	19:00

For example, let’s assume that someone in Los Angeles captured a packet with
Wireshark at exactly 2 o’clock local time and sends you this capture file. The
capture file’s time stamp will be represented in UTC as 10 o’clock. You are
located in Berlin and will see 11 o’clock on your Wireshark display.

Now you have a phone call, video conference or Internet meeting with that one to
talk about that capture file. As you are both looking at the displayed time on
your local computers, the one in Los Angeles still sees 2 o’clock but you in
Berlin will see 11 o’clock. The time displays are different as both Wireshark
displays will show the (different) local times at the same point in time.

Conclusion: You may not bother about the date/time of the time stamp you
currently look at unless you must make sure that the date/time is as expected.
So, if you get a capture file from a different time zone and/or DST, you’ll have
to find out the time zone/DST difference between the two local times and
“mentally adjust” the time stamps accordingly. In any case, make sure that
every computer in question has the correct time and time zone setting.

Packet Reassembly

What Is It?

 Network protocols often need to transport large chunks of data which are
complete in themselves, e.g., when transferring a file. The underlying protocol
might not be able to handle that chunk size (e.g., limitation of the network
packet size), or is stream-based like TCP, which doesn’t know data chunks at
all.

In that case the network protocol has to handle the chunk boundaries itself and
(if required) spread the data over multiple packets. It obviously also needs a
mechanism to determine the chunk boundaries on the receiving side.

Wireshark calls this mechanism reassembly, although a specific protocol
specification might use a different term for this (e.g., desegmentation,
defragmentation, etc.).

How Wireshark Handles It

 For some of the network protocols Wireshark knows of, a mechanism is implemented
to find, decode and display these chunks of data. Wireshark will try to find the
corresponding packets of this chunk, and will show the combined data as
additional tabs in the “Packet Bytes” pane (for information about this pane.
See The “Packet Bytes” Pane).

[image: ws bytes pane tabs]

Figure 77. The “Packet Bytes” pane with a reassembled tab

Reassembly might take place at several protocol layers, so it’s possible that
multiple tabs in the “Packet Bytes” pane appear.

You will find the reassembled data in the last packet of the chunk.

For example, in a HTTP GET response, the requested data (e.g., an HTML page) is
returned. Wireshark will show the hex dump of the data in a new tab
“Uncompressed entity body” in the “Packet Bytes” pane.

Reassembly is enabled in the preferences by default but can be disabled in the
preferences for the protocol in question. Enabling or disabling reassembly
settings for a protocol typically requires two things:

	
The lower-level protocol (e.g., TCP) must support reassembly. Often this
reassembly can be enabled or disabled via the protocol preferences.

	
The higher-level protocol (e.g., HTTP) must use the reassembly mechanism to
reassemble fragmented protocol data. This too can often be enabled or disabled
via the protocol preferences.

The tooltip of the higher-level protocol setting will notify you if and which
lower-level protocol setting also has to be considered.

TCP Reassembly

 Protocols such as HTTP or TLS are likely to span multiple TCP segments. The
TCP protocol preference “Allow subdissector to reassemble TCP streams” (enabled
by default) makes it possible for Wireshark to collect a contiguous sequence of
TCP segments and hand them over to the higher-level protocol (for example, to
reconstruct a full HTTP message). All but the final segment will be marked with
“[TCP segment of a reassembled PDU]” in the packet list.

Disable this preference to reduce memory and processing overhead if you are only
interested in TCP sequence number analysis (TCP Analysis). Keep in mind,
though, that higher-level protocols might be wrongly dissected. For example,
HTTP messages could be shown as “Continuation” and TLS records could be shown as
“Ignored Unknown Record”. Such results can also be observed if you start
capturing while a TCP connection was already started or when TCP segments
are lost or delivered out-of-order.

To reassemble of out-of-order TCP segments, the TCP protocol preference
“Reassemble out-of-order segments” (currently disabled by default) must be
enabled in addition to the previous preference.
If all packets are received in-order, this preference will not have any effect.
Otherwise (if missing segments are encountered while sequentially processing a
packet capture), it is assuming that the new and missing segments belong to the
same PDU. Caveats:

	
Lost packets are assumed to be received out-of-order or retransmitted later.
Applications usually retransmit segments until these are acknowledged, but if
the packet capture drops packets, then Wireshark will not be able to
reconstruct the TCP stream. In such cases, you can try to disable this
preference and hopefully have a partial dissection instead of seeing just
“[TCP segment of a reassembled PDU]” for every TCP segment.

	
When doing a capture in monitor mode (IEEE 802.11), packets are more likely to
get lost due to signal reception issues. In that case it is recommended to
disable the option.

	
If the new and missing segments are in fact part of different PDUs,
then processing is currently delayed until no more segments are missing, even
if the begin of the missing segments completed a PDU. For example, assume six
segments forming two PDUs ABC and DEF. When received as ABECDF, an
application can start processing the first PDU after receiving ABEC.
Wireshark however requires the missing segment D to be received as well.
This issue will be addressed in the future.

	
In the GUI and during a two-pass dissection (tshark -2), the previous
scenario will display both PDUs in the packet with last segment (F) rather
than displaying it in the first packet that has the final missing segment of a
PDU. This issue will be addressed in the future.

	
When enabled, fields such as the SMB “Time from request” (smb.time) might be
smaller if the request follows other out-of-order segments (this reflects
application behavior). If the previous scenario however occurs, then the time
of the request is based on the frame where all missing segments are received.

Regardless of the setting of these two reassembly-related preferences, you can
always use the “Follow TCP Stream” option (Following Protocol Streams) which
displays segments in the expected order.

Name Resolution

 Name resolution tries to convert some of the numerical address values into a
human readable format. There are two possible ways to do these conversions,
depending on the resolution to be done: calling system/network services (like
the gethostname() function) and/or resolving from Wireshark specific
configuration files. For details about the configuration files Wireshark uses
for name resolution and alike, see [AppFiles].

The name resolution feature can be enabled individually for the protocol layers
listed in the following sections.

Name Resolution Drawbacks

 Name resolution can be invaluable while working with Wireshark and may even save
you hours of work. Unfortunately, it also has its drawbacks.

	
Name resolution can often fail. The name to be resolved might simply be
unknown by the name servers asked, or the servers are just not available and
the name is also not found in Wireshark’s configuration files.

	
Resolved names might not be available.
Wireshark obtains name resolution information from a variety of sources, including DNS servers, the capture file itself (e.g., for a pcapng file), and the hosts files on your system and in your profile directory.
The resolved names might not be available if you open the capture file later or on a different machine. As a result, each time you or someone else opens a particular capture file it may look slightly different due to changing environments.

	
DNS may add additional packets to your capture file.
You might run into the observer effect if the extra traffic from Wireshark’s DNS queries and responses affects the problem you’re trying to troubleshoot or any subsequent analysis.
The same sort of thing can happen when capturing over a remote connection, e.g., SSH or RDP.

	
Resolved DNS names are cached by Wireshark. This is required for acceptable
performance. However, if the name resolution information should change while
Wireshark is running, Wireshark won’t notice a change in the name resolution
information once it gets cached. If this information changes while Wireshark
is running, e.g., a new DHCP lease takes effect, Wireshark won’t notice it.

Name resolution in the packet list is done while the list is filled. If a name
can be resolved after a packet is added to the list, its former entry won’t be
changed. As the name resolution results are cached, you can use
View › Redissect Packets to rebuild the packet list with
the correctly resolved names.

Ethernet Name Resolution (MAC Layer)

 Try to resolve an Ethernet MAC address (e.g., 00:09:5b:01:02:03) to a human readable name.

ARP name resolution (system service): Wireshark will ask the operating
system to convert an Ethernet address to the corresponding IP address (e.g.
00:09:5b:01:02:03 → 192.168.0.1).

Ethernet codes (ethers file): If the ARP name resolution failed, Wireshark
tries to convert the Ethernet address to a known device name, which has been
assigned by the user using an ethers file (e.g., 00:09:5b:01:02:03 →
homerouter).

Ethernet manufacturer codes (manuf file): If neither ARP or ethers returns a
result, Wireshark tries to convert the first 3 bytes of an ethernet address to
an abbreviated manufacturer name, which has been assigned by the IEEE (e.g.
00:09:5b:01:02:03 → Netgear_01:02:03).

IP Name Resolution (Network Layer)

 Try to resolve an IP address (e.g., 216.239.37.99) to a human readable name.

DNS name resolution (system/library service): Wireshark will use a name
resolver to convert an IP address to the hostname associated with it
(e.g., 216.239.37.99 → www.1.google.com).

Most applications use synchronously DNS name resolution.
For example, your web browser must resolve the host name portion of a URL before it can connect to the server.
Capture file analysis is different.
A given file might have hundreds, thousands, or millions of IP addresses so for usability and performance reasons Wireshark uses asynchronous resolution.
Both mechanisms convert IP addresses to human readable (domain) names and typically use different sources such as the system hosts file (/etc/hosts) and any configured DNS servers.

Since Wireshark doesn’t wait for DNS responses, the host name for a given address might be missing from a given packet when you view it the first time but be present when you view it subsequent times.

You can adjust name resolution behavior in the Name Resolution section in the Preferences Dialog.
You can control resolution itself by adding a hosts file to your personal configuration directory.
You can also edit your system hosts file, but that isn’t generally recommended.

TCP/UDP Port Name Resolution (Transport Layer)

 Try to resolve a TCP/UDP port (e.g., 80) to a human readable name.

TCP/UDP port conversion (system service): Wireshark will ask the operating
system to convert a TCP or UDP port to its well-known name (e.g., 80 → http).

VLAN ID Resolution

 To get a descriptive name for a VLAN tag ID a vlans file can be used.

SS7 Point Code Resolution

 To get a node name for a SS7 point code a ss7pcs file can be used.

Checksums

 Several network protocols use checksums to ensure data integrity. Applying
checksums as described here is also known as redundancy checking.

What are checksums for?

Checksums are used to ensure the integrity of data portions for data
transmission or storage. A checksum is basically a calculated summary of such a
data portion.

Network data transmissions often produce errors, such as toggled, missing or
duplicated bits. As a result, the data received might not be identical to the
data transmitted, which is obviously a bad thing.

Because of these transmission errors, network protocols very often use checksums
to detect such errors. The transmitter will calculate a checksum of the data and
transmits the data together with the checksum. The receiver will calculate the
checksum of the received data with the same algorithm as the transmitter. If the
received and calculated checksums don’t match a transmission error has occurred.

Some checksum algorithms are able to recover (simple) errors by calculating
where the expected error must be and repairing it.

If there are errors that cannot be recovered, the receiving side throws away the
packet. Depending on the network protocol, this data loss is simply ignored or
the sending side needs to detect this loss somehow and retransmits the required
packet(s).

Using a checksum drastically reduces the number of undetected transmission
errors. However, the usual checksum algorithms cannot guarantee an error
detection of 100%, so a very small number of transmission errors may remain
undetected.

There are several different kinds of checksum algorithms; an example of an often
used checksum algorithm is CRC32. The checksum algorithm actually chosen for a
specific network protocol will depend on the expected error rate of the network
medium, the importance of error detection, the processor load to perform the
calculation, the performance needed and many other things.

Further information about checksums can be found at:
https://en.wikipedia.org/wiki/Checksum.

Wireshark Checksum Validation

 Wireshark will validate the checksums of many protocols, e.g., IP, TCP, UDP, etc.

It will do the same calculation as a “normal receiver” would do, and shows the
checksum fields in the packet details with a comment, e.g., [correct] or
[invalid, must be 0x12345678].

Checksum validation can be switched off for various protocols in the Wireshark
protocol preferences, e.g., to (very slightly) increase performance.

If the checksum validation is enabled and it detected an invalid checksum,
features like packet reassembly won’t be processed. This is avoided as
incorrect connection data could “confuse” the internal database.

Checksum Offloading

 The checksum calculation might be done by the network driver, protocol driver or
even in hardware.

For example: The Ethernet transmitting hardware calculates the Ethernet CRC32
checksum and the receiving hardware validates this checksum. If the received
checksum is wrong Wireshark won’t even see the packet, as the Ethernet hardware
internally throws away the packet.

Higher-level checksums are “traditionally” calculated by the protocol
implementation and the completed packet is then handed over to the hardware.

Recent network hardware can perform advanced features such as IP checksum
calculation, also known as checksum offloading. The network driver won’t
calculate the checksum itself but will simply hand over an empty (zero or
garbage filled) checksum field to the hardware.

Checksum offloading often causes confusion as network packets to be
transmitted are given to Wireshark before they are handed over to the
hardware. Wireshark gets these “empty” checksums and displays them as
invalid, even though the packets will contain valid checksums when they
transit the network.

This only applies to packets that are locally generated by the capture
point. Received packets will have traveled through network hardware
and should have correct checksums.

Checksum offloading can be confusing and having a lot of [invalid] messages on
the screen can be quite annoying. As mentioned above, invalid checksums may lead
to unreassembled packets, making the analysis of the packet data much harder.

You can do two things to avoid this checksum offloading problem:

	
Turn off the checksum offloading in the network driver, if this option is available.

	
Turn off checksum validation of the specific protocol in the Wireshark preferences.
Recent releases of Wireshark disable checksum validation by default due to the
prevalence of offloading in modern hardware and operating systems.

Partial Checksums

 TCP and UDP checksums are calculated over both the payload and from selected
elements from the IPv4 or IPv6 header, known as the pseudo header. Linux
and Windows, when offloading checksums, will calculate the contribution from
the pseudo header and place it in the checksum field. The driver then directs
the hardware to calculate the checksum over the payload area, which will
produce the correct result including the pseudo header’s portion of the sum
as a matter of mathematics.

This precomputation speeds up the hardware checksum calculation later,
allows the driver to direct the hardware to do checksums over encapsulated
payloads (Local Checksum Offload), and allows applications to send
the kernel large "superpacket" buffers that will be later divided by
the hardware into multiple maximum size packets when sent on the network
(TCP Segmentation Offload (TSO) and Generic Segmentation Offload (GSO)).

Wireshark 4.2.0 and later can calculate the partial checksum contribution
from the pseudo header, and when validating TCP and UDP checksums will
mark partial checksums as valid but partial. The packets with partial
checksums will not be colored as Bad Checksums by the default coloring rules,
and will still be used for reassembly. This eliminates spurious checksum
errors seen on packets transmitted from the capturing host on those platforms
that use partial checksums when offloading.

Statistics

Introduction

 Wireshark provides a wide range of network statistics which can be accessed via
the Statistics menu.

These statistics range from general information about the loaded capture file
(like the number of captured packets), to statistics about specific protocols
(e.g., statistics about the number of HTTP requests and responses captured).

General statistics

	
Capture File Properties about the capture file.

	
Protocol Hierarchy of the captured packets.

	
Conversations e.g., traffic between specific IP addresses.

	
Endpoints e.g., traffic to and from IP addresses.

	
I/O Graphs visualizing the number of packets (or similar) in time.

Protocol specific statistics

	
Service Response Time between request and response of some protocols.

	
Various other protocol specific statistics.

The protocol specific statistics require detailed knowledge about the specific
protocol. Unless you are familiar with that protocol, statistics about it may
be difficult to understand.

Wireshark has many other statistics windows that display detailed
information about specific protocols and might be described in a later
version of this document.

Some of these statistics are described at
https://wiki.wireshark.org/Statistics.

The “Capture File Properties” Dialog

 General information about the current capture file.

[image: ws capture file properties]

Figure 78. The “Capture File Properties” dialog

This dialog shows the following information:

	
Details

	
Notable information about the capture file.

	
File

	
General information about the capture file, including its full path, size, cryptographic hashes, file format, and encapsulation.

	
Time

	
The timestamps of the first and the last packet in the file along with their difference.

	
Capture

	
Information about the capture environment.
This will only be shown for live captures or if this information is present in a saved capture file.
The pcapng format supports this, while pcap doesn’t.

	
Interfaces

	
Information about the capture interface or interfaces.

	
Statistics

	
A statistical summary of the capture file.
If a display filter is set, you will see values in the Captured column, and if any packets are marked, you will see values in the Marked column.
The values in the Captured column will remain the same as before, while the values in the Displayed column will reflect the values corresponding to the packets shown in the display.
The values in the Marked column will reflect the values corresponding to the marked packages.

	
Capture file comments

	
Some capture file formats (notably pcapng) allow a text comment for the entire file.
You can view and edit this comment here.

	
Refresh

	
Updates the information in the dialog.

	
Save Comments

	
Saves the contents of the “Capture file comments” text entry.

	
Close

	
Closes the dialog

	
Copy To Clipboard

	
Copies the “Details” information to the clipboard.

	
Help

	
Opens this section of the User’s Guide.

Resolved Addresses

 The Resolved Addresses window shows the list of resolved addresses and their host names. Users can choose the Hosts field to display IPv4 and IPv6 addresses only. In this case, the dialog displays host names for each IP address in a capture file with a known host. This host is typically taken from DNS answers in a capture file. In case of an unknown host name, users can populate it based on a reverse DNS lookup. To do so, follow these steps:

	
Enable Resolve Network Addresses in the View › Name Resolution menu as this option is disabled by default.

	
Select Use an external network name resolver in the Preferences › Name Resolution menu. This option is enabled by default.

The resolved addresses are not updated automatically after a user changes the settings. To display newly available names, the user has to reopen the dialog.

The Ports tab shows the list of service names, ports and types.

Wireshark reads the entries for port mappings from the hosts service configuration files. See Configuration Files section for more information.

[image: ws resolved addr]

Figure 79. Resolved Addresses window

The “Protocol Hierarchy” Window

 The protocol hierarchy of the captured packets.

[image: ws stats hierarchy]

Figure 80. The “Protocol Hierarchy” Window

This is a tree of all the protocols in the capture. Each row contains the
statistical values of one protocol. Two of the columns (Percent Packets and
Percent Bytes) serve double duty as bar graphs. If a display filter is set it
will be shown at the bottom.

The Copy button will let you copy the window contents as CSV or YAML.

Protocol hierarchy columns

	
Protocol

	
This protocol’s name.

	
Percent Packets

	
The percentage of protocol packets relative to all packets in the capture.

	
Packets

	
The total number of packets that contain this protocol.

	
Percent Bytes

	
The percentage of protocol bytes relative to the total bytes in the capture.

	
Bytes

	
The total number of bytes of this protocol.

	
Bits/s

	
The bandwidth of this protocol relative to the capture time.

	
End Packets

	
The absolute number of packets of this protocol where it was the highest protocol in the stack (last dissected).

	
End Bytes

	
The absolute number of bytes of this protocol where it was the highest protocol in the stack (last dissected).

	
End Bits/s

	
The bandwidth of this protocol relative to the capture time where was the highest protocol in the stack (last dissected).

	
PDUs

	
The total number of PDUs of this protocol.

Packets usually contain multiple protocols. As a result, more than one protocol
will be counted for each packet. Example: In the screenshot 100% of packets
are IP and 99.3% are TCP (which is together much more than 100%).

Protocol layers can consist of packets that won’t contain any higher layer
protocol, so the sum of all higher layer packets may not sum to the protocol’s
packet count. This can be caused by segments and fragments reassembled in other
frames, TCP protocol overhead, and other undissected data. Example: In the
screenshot 99.3% of the packets are TCP but the sum of the subprotocols
(TLS, HTTP, Git, etc.) is much less.

A single packet can contain the same protocol more than once. In this case, the
entry in the PDUs column will be greater than that of Packets. Example:
In the screenshot there are many more TLS and Git PDUs than there are packets.

Conversations

 A network conversation is the traffic between two specific endpoints. For
example, an IP conversation is all the traffic between two IP addresses. The
description of the known endpoint types can be found in Endpoints.

The conversations are influenced by the Deinterlacing conversations key
preference.

The “Conversations” Window

 The conversations window is similar to the endpoint Window. See
The “Endpoints” Window for a description of their common features. Along with
addresses, packet counters, and byte counters the conversation window adds four
columns: the start time of the conversation (“Rel Start”) or (“Abs Start”),
the duration of the conversation in seconds, and the average bits (not bytes)
per second in each direction. A timeline graph is also drawn across the
“Rel Start” / “Abs Start” and “Duration” columns.

[image: ws stats conversations]

Figure 81. The “Conversations” window

Each row in the list shows the statistical values for exactly one conversation.

Name resolution will be done if selected in the window and if it is active for
the specific protocol layer (MAC layer for the selected Ethernet endpoints
page). Limit to display filter will only show conversations matching the
current display filter. Absolute start time switches the start time column
between relative (“Rel Start”) and absolute (“Abs Start”) times. Relative start
times match the “Seconds Since First Captured Packet” time display format in the
packet list and absolute start times match the “Time of Day” display format.

If a display filter had been applied before the dialog is opened, Limit to
display filter will be set automatically. Additionally, after a display filter
had been applied, two columns ("Total Packets") and ("Percent Filtered") show
the number of unfiltered total packets and the percentage of packets in this filter
display.

The Copy button will copy the list values to the clipboard in CSV
(Comma Separated Values), YAML format or JSON format. The numbers are generally
exported without special formatting, but this can be enabled if needed.

The Follow Stream…​ button will show the stream contents as described
in The “Follow TCP Stream” dialog box dialog. The Graph…​ button will show a
Time Sequence graph as described in TCP Stream Graphs. The
I/O Graphs…​ will open the I/O Graph dialog described in
The “I/O Graphs” Window, with the selected conversations.

Protocol lets you choose which traffic type tabs are shown.
See Endpoints for a list of endpoint types. The enabled types
are saved in your profile settings, as well as the last opened tab.

This window will be updated frequently so it will be useful even if you open
it before (or while) you are doing a live capture.

Endpoints

 A network endpoint is the logical endpoint of separate protocol traffic of a
specific protocol layer. The endpoint statistics of Wireshark will take the
following endpoints into account:

If you are looking for a feature other network tools call a hostlist, here is
the right place to look. The list of Ethernet or IP endpoints is usually what
you’re looking for.

Endpoint and Conversation types

	
Bluetooth

	
A MAC-48 address similar to Ethernet.

	
Ethernet

	
Identical to the Ethernet device’s MAC-48 identifier.

	
Fibre Channel

	
A MAC-48 address similar to Ethernet.

	
IEEE 802.11

	
A MAC-48 address similar to Ethernet.

	
FDDI

	
Identical to the FDDI MAC-48 address.

	
IPv4

	
Identical to the 32-bit IPv4 address.

	
IPv6

	
Identical to the 128-bit IPv6 address.

	
IPX

	
A concatenation of a 32-bit network number and 48-bit node address, by
default the Ethernet interface’s MAC-48 address.

	
JXTA

	
A 160-bit SHA-1 URN.

	
NCP

	
Similar to IPX.

	
RSVP

	
A combination of various RSVP session attributes and IPv4 addresses.

	
SCTP

	
A combination of the host IP addresses (plural) and
the SCTP port used. So different SCTP ports on the same IP address are different
SCTP endpoints, but the same SCTP port on different IP addresses of the same
host are still the same endpoint.

	
TCP

	
A combination of the IP address and the TCP port used.
Different TCP ports on the same IP address are different TCP endpoints.

	
Token Ring

	
Identical to the Token Ring MAC-48 address.

	
UDP

	
A combination of the IP address and the UDP port used, so different UDP
ports on the same IP address are different UDP endpoints.

	
USB

	
Identical to the 7-bit USB address.

Broadcast and multicast endpoints

Broadcast and multicast traffic will be shown separately as additional
endpoints. Of course, as these aren’t physical endpoints the real traffic
will be received by some or all of the listed unicast endpoints.

The “Endpoints” Window

 This window shows statistics about the endpoints captured.

[image: ws stats endpoints]

Figure 82. The “Endpoints” window

For each supported protocol, a tab is shown in this window. Each tab label shows
the number of endpoints captured (e.g., the tab label “Ethernet · 4” tells
you that four ethernet endpoints have been captured). If no endpoints of a
specific protocol were captured, the tab label will be greyed out (although the
related page can still be selected).

Each row in the list shows the statistical values for exactly one endpoint.

Name resolution will be done if selected in the window and if it is
active for the specific protocol layer (MAC layer for the selected
Ethernet endpoints page). Limit to display filter will only show
conversations matching the current display filter. Note that in this
example we have MaxMind DB configured which gives us extra geographic
columns. See MaxMind Database Paths for more information.

If a display filter had been applied before the dialog is opened, Limit to
display filter will be set automatically. Additionally, after a display filter
had been applied, two columns ("Total Packets") and ("Percent Filtered") show
the number of unfiltered total packets and the percentage of packets in this filter
display.

For IPv4 endpoints only, the Hide aggregated checkbox controls how the traffic
identified from the subnets file should be displayed. By default (not checked),
the individual endpoints and the subnets are both displayed, and when checked,
only the aggregation is. The traffic which is not matching any subnet is kept
as it is. This checkbox is available only when the IPv4 user preference
Aggregate subnets in Statistics Dialogs is enabled.
See Configuration Files for the subnets file
description.
image::images/ws-stats-endpoints-ipv4aggregation.png[scaledwidth="85%"]

The Copy button will copy the list values to the clipboard in CSV
(Comma Separated Values), YAML format or JSON format. The numbers are generally
exported without special formatting, but this can be enabled if needed.
The Map button will show the endpoints mapped in your web browser.

Protocol lets you choose which traffic type tabs are shown. See
Endpoints above for a list of endpoint types. The enabled
types are saved in your profile settings, as well as the last opened tab.

This window will be updated frequently, so it will be useful even if you open
it before (or while) you are doing a live capture.

Packet Lengths

 Shows the distribution of packet lengths and related information.

[image: ws stats packet lengths]

Figure 83. The “Packet Lengths” window

Information is broken down by packet length ranges as shown above.

	
Packet Lengths

	
The range of packet lengths.
Ranges can be configured in the “Statistics → Stats Tree” section of the Preferences Dialog.

	
Count

	
The number of packets that fall into this range.

	
Average

	
The arithmetic mean of the packet lengths in this range.

	
Min Val, Max Val

	
The minimum and maximum lengths in this range.

	
Rate (ms)

	
The average packets per millisecond for the packets in this range.

	
Percent

	
The percentage of packets in this range, by count.

	
Burst Rate

	
Packet bursts are detected by counting the number of packets in a given time interval and comparing that count to the intervals across a window of time.
Statistics for the interval with the maximum number of packets are shown.
By default, bursts are detected across 5 millisecond intervals and intervals are compared across 100 millisecond windows.
These calculations can be adjusted in the “Statistics” section of the Preferences Dialog.

	
Burst Start

	
The start time, in seconds from the beginning of the capture, for the interval with the maximum number of packets.

You can show statistics for a portion of the capture by entering a display filter into the Display filter entry and pressing Apply.

Copy copies the statistics to the clipboard.
Save as…​ lets you save the data as text, CSV, YAML, or XML.

The “I/O Graphs” Window

 Lets you plot packet and protocol data in a variety of ways.

[image: ws stats iographs]

Figure 84. The “I/O Graphs” window

As shown above, this window contains a chart drawing area along with a customizable list of graphs.
Graphs are saved in your current profile.
They are divided into time intervals, which can be set as described below.
Hovering over the graph shows the last packet number of the selected graph (or by default,
the first enabled graph in the graphs list) in each interval except as noted below.
If the graph was customized, instead of the packet number it will show a value computed according
to the custom settings (ex: MAX,MIN,..).
Clicking on the graph takes you to the associated packet in the packet list.
Individual graphs can be configured using the following options:

	
Enabled

	
Draw or don’t draw this graph.

	
Avg over Time

	
When checked and the “Y Axis” value is one of Packets/Bytes/Bits, the displayed value is an average over time
based on the Interval, instead of the raw value. The ordinary throughput is obtained when “Y Axis” is set
to Bits.

	
Graph Name

	
The name of this graph.

	
Display Filter

	
Limits the graph to packets that match this filter.

	
Color

	
The color to use for plotting the graph’s lines, bars, or points.

	
Style

	
How to visually represent the graph’s data, e.g., by drawing a line, bar, circle, plus, etc.

	
Y Axis

	
The value to use for the graph’s Y axis. Can be one of:

	
Packets, Bytes, or Bits

	
The total number of packets, packet bytes, or packet bits that match the graph’s display filter per interval.
Zero values are omitted in some cases.

	
SUM(Y Field)

	
The sum of the values of the field specified in “Y Field” per interval.

	
COUNT FRAMES(Y Field)

	
The number of frames that contain the field specified in “Y Field” per interval.

	
COUNT FIELDS(Y Field)

	
The number of instances of the field specified in “Y Field” per interval.
Some fields, such as dns.resp.name, can show up multiple times in a packet.

	
MAX(Y Field), MIN(Y Field), AVG(Y Field)

	
The maximum, minimum, and arithmetic mean values of the specified “Y Field” per interval.
For MAX and MIN values, hovering and clicking the graph will show and take you to the packet with the MAX or MIN value in the interval instead of the most recent packet.

	
LOAD(Y Field)

	
The queue depth, i.e., number of concurrent requests or calls, in each interval expressed in Erlangs.
Requires “Y Field” be a relative time value, and treats it as the duration of an event which
ended in the containing packet. Useful for response time fields like smb.time.

	
THROUGHPUT(Y Field)

	
If the “Y Field” is a payload (as frame.len, ip.len, ipv6.plen..), this is the computed throughput based on this payload.
The “Y Axis Factor” needs to be set accordingly to the payload unit to have a value expressed in bits unit (ex: ip.len being expressed as Bytes, set Y Axis Factor to 8).

	
Y Field

	
The display filter field from which to extract values for the Y axis calculations listed above.

	
SMA Period

	
Show a simple moving average of values over a specified period of intervals.

	
Y Axis Factor

	
Scale the Y axis for this graph by multiplying by a constant factor, e.g. to
graph bits if the “Y Field” contains bytes, or to present multiple graphs at
a similar scale.

The chart as a whole can be configured using the controls under the graph list:

	
+

	
Add a new graph.

	
-

	
Remove the selected graph(s).

	
Copy

	
Copy the selected graph(s).

	
⌃

	
Move the selected graph(s) up in the list.

	
⌄

	
Move the selected graph(s) down in the list.

	
Clear

	
Remove all graphs.

	
Mouse drags / zooms

	
When using the mouse inside the graph area, either drag the graph contents or select a zoom area.

	
Interval

	
Set the interval period for the graph.

	
Time of day

	
Switch between showing the absolute time of day or the time relative from the start of capture in the X axis.

	
Log scale

	
Switch between a logarithmic or linear Y axis.

	
Automatic updates

	
Redraw each graph automatically.

	
Enable legend

	
Show a graph legend.

The main dialog buttons along the bottom let you do the following:

Help will take you to this section of the User’s Guide.

Reset will autoscale the axes to full display all graphs.

Copy will copy values from selected graphs to the clipboard in CSV
(Comma Separated Values) format.

Copy from will let you copy graphs from another profile to the current dialog.

Close will close this dialog.

Save As…​ will save the currently displayed graph as an image or CSV data.

You can see a list of useful keyboard shortcuts by right-clicking on the graph.

Missing Values Are Zero

 Wireshark’s I/O Graph window counts or calculates summary statistics over intervals.
If a packet or field does not occur in a given interval, the calculation might yield zero.
This is particularly likely for very small intervals. For "counting" graphs
(Packets, Bytes, Bits, COUNT FRAMES, COUNT FIELDS) zero values are omitted from scatter
plots, but shown in line graphs and bar charts. For the summary statistics SUM, MAX, and AVG,
values are always omitted if the Y field was not present in the interval.
For LOAD graphs, values are omitted if no field’s time indicated that an event was
was present in the interval.
(Note for LOAD graphs that a response time can contribute to earlier intervals than
the one containing the packet if the duration is longer than the interval.)

The “Plots” Window

 Lets you plot display filter field values over time.

[image: ws stats plots]

Figure 85. The “Plots” window

As shown above, this window contains a plot drawing area along with a customizable list of plots.
Plots are saved in your current profile.
Each plot shows the value of the specified field (see Y Field below) at each point in time.
Hovering over the plot shows the packet number of the selected plot at any given time.
Clicking on the plot takes you to the corresponding packet in the packet list.
You can drag the plots around with a left click and zoom on a specific area with a right click.

Individual plots can be configured using the following options:

	
Enabled

	
Draw or don’t draw this plot.

	
Group #

	
If you don’t want all plots on the same graph, you can use this field to
group them. Each one will be shown in a distinct graph.

	
Plot Name

	
The name of this plot.

	
Display Filter

	
Limits the plot to packets that match this filter.

	
Color

	
The color to use for plotting the plot’s lines or points.

	
Style

	
How to visually represent the plot’s data, e.g., by drawing a line, circle, plus, etc.

	
Y Field

	
The display filter field from which to extract values for the Y axis.

	
Y Axis Factor

	
Scale the Y axis for this plot by multiplying by a constant factor, e.g. to
present multiple plots at a similar scale.

The plot as a whole can be configured using the controls under the plot list:

	
+

	
Add a new plot.

	
-

	
Remove the selected plot(s).

	
Copy

	
Copy the selected plot(s).

	
⌃

	
Move the selected plot(s) up in the list.

	
⌄

	
Move the selected plot(s) down in the list.

	
Clear

	
Remove all plots.

	
Automatic updates

	
Redraw each plot automatically.

	
Time origin

	
Switch between showing the time relative to first data point and time relative to capture
start (not available in pcapng).

	
Log scale

	
Switch between linear and logarithmic Y axis.

	
Crosshairs

	
Enable/disable the crosshairs cursor.

	
Top axis

	
Show the axis scale also on top of the plot.

	
Enable legend

	
Show a plot legend.

The main dialog buttons along the bottom let you do the following:

Help will take you to this section of the User’s Guide.

Reset will autoscale the axes to fully display all plots.

Copy will copy values from selected plot to the clipboard in CSV
(Comma Separated Values) format.

Copy from will let you copy plots from another profile to the current dialog.

Close will close this dialog.

Save As…​ will save the currently displayed plot as an image.

You can see a list of useful keyboard shortcuts by right-clicking on the plot.

Service Response Time

 The service response time is the time between a request and the corresponding response.
This information is available for many protocols, including the following:

	
AFP

	
CAMEL

	
DCE-RPC

	
Diameter

	
Fibre Channel

	
GTP

	
GTPv2

	
H.225 RAS

	
LDAP

	
MEGACO

	
MGCP

	
NCP

	
ONC-RPC

	
PFCP

	
RADIUS

	
SCSI

	
SMB

	
SMB2

	
SNMP

As an example, the SMB2 service response time is described below in more detail.
The other Service Response Time windows will show statistics specific to their respective protocols, but will offer the same menu options.

The “SMB2 Service Response Time Statistics” Window

 This window shows the number of transactions for each SMB2 opcode present in the capture file along with various response time statistics.
Right-clicking on a row will let you apply or prepare filters for, search for, or colorize a specific opcode.
You can also copy all of the response time information or save it in a variety of formats.

[image: ws stats srt smb2]

Figure 86. The “SMB2 Service Response Time Statistics” window

You can optionally apply a display filter in order to limit the statistics to a specific set of packets.

The main dialog buttons along the bottom let you do the following:

The Copy button will copy the response time information as text.

Save As…​ will save the response time information in various formats.

Close will close this dialog.

DHCP (BOOTP) Statistics

 The Dynamic Host Configuration Protocol (DHCP) is an option of the Bootstrap Protocol (BOOTP). It dynamically assigns IP addresses and other parameters to a DHCP client. The DHCP (BOOTP) Statistics window displays a table over the number of occurrences of a DHCP message type. The user can filter, copy or save the data into a file.

NetPerfMeter Statistics

 The NetPerfMeter Protocol (NPMP) is the control and data transfer protocol of NetPerfMeter, the transport protocol performance testing tool. It transmits data streams over TCP, SCTP, UDP and DCCP with given parameters, such as frame rate, frame size, saturated flows, etc.

With these statistics you can:

	
Observed number of messages and bytes per message type.

	
The share of messages and bytes for each message type.

	
See the first and last occurrence of each message type.

	
See the interval between first and last occurrence of each message type (if there are at least 2 messages of the corresponding type).

	
See the message and byte rate within the interval for each message type (if there are at least 2 messages of the corresponding type).

See NetPerfMeter – A TCP/MPTCP/UDP/SCTP/DCCP Network Performance Meter Tool and Section 6.3 of
Evaluation and Optimisation of Multi-Path Transport using the Stream Control Transmission Protocol for more details about NetPerfMeter and the NetPerfMeter Protocol.

[image: ws netperfmeter statistics]

Figure 87. NetPerfMeter Statistics window

ONC-RPC Programs

 Open Network Computing (ONC) Remote Procedure Call (RPC) uses TCP or UDP protocols to map a program number to a specific port on a remote machine and call a required service at that port. The ONC-RPC Programs window shows the description for captured program calls, such as program name, its number, version, and other data.

29West

 The 29West technology now refers to Ultra-Low Latency Messaging (ULLM) technology. It allows sending and receiving a high number of messages per second with microsecond delivery times for zero-latency data delivery.

The Statistics › 29West shows:

	The Topics submenu shows counters for:

	

	
Advertisement by Topic

	
Advertisement by Source

	
Advertisement by Transport

	
Queries by Topic

	
Queries by Receiver

	
Wildcard Queries by Pattern

	
Wildcard Queries by Receiver

	The Queues submenu shows counters for:

	

	
Advertisement by Queue

	
Advertisement by Source

	
Queries by Queue

	
Queries by Receiver

	The UIM submenu shows Streams:

	Each stream is provided by Endpoints, Messages, Bytes, and the First and Last Frame statistics.

	The LBT-RM submenu

	The LBT-RM Transport Statistics window shows the Sources and Receivers sequence numbers for transport and other data.

	The LBT-RU submenu

	The LBT-Ru Transport Statistics window shows the Sources and Receivers sequence numbers for transport and other data.

ANCP

 The Access Node Control Protocol (ANCP) is an TCP based protocol, which operates between an Access Node and Network Access Server. The Wireshark ANCP dissector supports the listed below messages:

	
Adjacency Message

	
Topology Discovery Extensions, such as Port-Up and Port-Down Messages

	
Operation And Maintenance (OAM) Extension, such as Port Management Message.

The ANCP window shows the related statistical data. The user can filter, copy or save the data into a file.

BACnet

 Building Automation and Control Networks (BACnet) is a communication protocol which provides control for various building automated facilities, such as light control, fire alarm control, and others. Wireshark provides the BACnet statistics which is a packet counter. You can sort packets by instance ID, IP address, object type or service.

Collectd

 Collectd is a system statistics collection daemon. It collects various statistics from your system and converts it for the network use. The Collectd statistics window shows counts for values, which split into type, plugin, and host as well as total packets counter. You can filter, copy or save the data to a file.

DNS

 The Domain Name System (DNS) associates different information, such as IP addresses, with domain names. DNS returns different codes, request-response and counters for various aggregations. The DNS statistics window enlists a total count of DNS messages, which are divided into groups by request types (opcodes), response code (rcode), query type, and others.

[image: ws dns]

Figure 88. DNS statistics window

You might find these statistics useful for quickly examining the health of a DNS service or other investigations. See the few possible scenarios below:

	
The DNS server might have issues if you see that DNS queries have a long request-response time or, if there are too many unanswered queries.

	
DNS requests with abnormally large requests and responses might be indicative of DNS tunneling or command and control traffic.

	
The order of magnitude more DNS responses than requests and the responses are very large might indicate that the target is being attacked with a DNS-based DDoS.

You can filter, copy or save the data into a file.

Flow Graph

 The Flow Graph window shows connections between hosts. It displays the packet time, direction, ports and comments for each captured connection. You can filter all connections by ICMP Flows, ICMPv6 Flows, UIM Flows and TCP Flows. Flow Graph window is used for showing multiple different topics. Based on it, it offers different controls.

[image: ws flow graph]

Figure 89. Flow Graph window

Each vertical line represents the specific host, which you can see in the top of the window.

The numbers in each row at the very left of the window represent the time packet. You can change the time format in the View › Time Display Format. If you change the time format, you must relaunch the Flow Graph window to observe the time in a new format.

The numbers at the both ends of each arrow between hosts represent the port numbers.

Left-click a row to select a corresponding packet in the packet list.

Right-click on the graph for additional options, such as selecting the previous, current, or next packet in the packet list. This menu also contains shortcuts for moving the diagram.

Available controls:

	
Limit to display filter filters calls just to ones matching display filter. When display filter is active before window is opened, checkbox is checked.

	
Flow type allows limit type of protocol flows should be based on.

	
Addresses allows switch shown addresses in diagram.

	
Reset Diagram resets view position and zoom to default state.

	
Export allows export diagram as image in multiple different formats (PDF, PNG, BMP, JPEG and ASCII (diagram is stored with ASCII characters only)).

[image: ws tel seq dialog]

Figure 90. Flow Graph window showing VoIP call sequences

Additional shortcuts available for VoIP calls:

	
On selected RTP stream

	
S - Selects the stream in RTP Streams window (if not opened, it opens it and put it on background).

	
D - Deselects the stream in RTP Streams window (if not opened, it opens it and put it on background).

Additional controls available for VoIP calls:

	
Reset Diagram resets view position and zoom to default state.

	
Play Streams sends selected RTP stream to playlist of RTP Player window.

	
Export allows to export diagram as image in multiple different formats (PDF, PNG, BMP, JPEG and ASCII (diagram is stored with ASCII characters only)).

HART-IP

 Highway Addressable Remote Transducer over IP (HART-IP) is an application layer protocol. It sends and receives digital information between smart devices and control or monitoring systems. The HART-IP statistics window shows the counter for response, request, publish and error packets. You can filter, copy or save the data to a file.

HPFEEDS

 Hpfeeds protocol provides a lightweight authenticated publishing and subscription. It supports arbitrary binary payloads which can be separated into different channels. HPFEEDS statistics window shows a counter for payload size per channel and opcodes. You can filter, copy or save the data to a file.

HTTP Statistics

HTTP Packet Counter

 Statistics for HTTP request types and response codes.

HTTP Requests

 HTTP statistics based on the host and URI.

HTTP Load Distribution

 HTTP request and response statistics based on the server address and host.

HTTP Request Sequences

 HTTP Request Sequences uses HTTP’s Referer and Location headers to sequence a
capture’s HTTP requests as a tree. This enables analysts to see how one HTTP
request leads to the next.

[image: ws stats http requestsequences]

Figure 91. The “HTTP Request Sequences” window

HTTP2

 Hypertext Transfer Protocol version 2 (HTTP/2) allows multiplexing various HTTP requests and responses over a single connection. It uses a binary encoding which is consisting of frames. The HTTP/2 statistics window shows the total number of HTTP/2 frames and also provides a breakdown per frame types, such as HEADERS, DATA, and others.

As HTTP/2 traffic is typically encrypted with TLS, you must configure decryption to observe HTTP/2 traffic. For more details, see the TLS wiki page.

Sametime

 Sametime is a protocol for the IBM Sametime software. The Sametime statistics window shows the counter for message type, send type, and user status.

TCP Stream Graphs

 Show different visual representations of the TCP streams in a capture.

	
Time Sequence (Stevens)

	
This is a simple graph of the TCP sequence
number over time, similar to the ones used in Richard Stevens’ “TCP/IP
Illustrated” series of books.

	
Time Sequence (tcptrace)

	
Shows TCP metrics similar to the
tcptrace utility, including forward segments,
acknowledgements, selective acknowledgements, reverse window sizes, and
zero windows.

	
Throughput

	
Average throughput and goodput.

	
Round Trip Time

	
Round trip time vs time or sequence number. RTT is
based on the acknowledgment timestamp corresponding to a particular
segment. The sampling method selects which segments are taken into
account and how the RTT is computed:

	
All Data Packets, all segments carrying data are computed, and when
present, SACK is ignored.

	
All Data Packets w/ SACK, all segments carrying data are computed,
the RTT value is based on SACK if present.

	
Data Packets matching RTT, only segments with a corresponding RTT
value in the packet list are computed.

	
Data Packets matching Karn RTT, only segments with a corresponding RTT
value in the packet list are computed, ambiguous ACKs following Karn’s
definition are excluded.

	
Window Scaling

	
Window size and outstanding bytes.

UDP Multicast Streams

 The UDP Multicast Streams window shows statistics for all UDP multicast streams. It includes source addresses and ports, destination addresses and ports, packets counter and other data. You can specify the burst interval, the alarm limits and output speeds. To apply new settings, press Enter.

With these statistics you can:

	
Measure the burst size for a video stream. This uses the sliding window algorithm.

	
Measure of the output buffer size limit, that no packet drop will occur. This uses the Leaky bucket algorithm.

	
Detect the packet loss inside the MPEG2 video stream.

[image: ws udp multicast stream]

Figure 92. UDP Multicast Streams window

Reliable Server Pooling (RSerPool)

 The Reliable Server Pooling (RSerPool) windows show statistics for the different protocols of Reliable Server Pooling (RSerPool):

	
Aggregate Server Access Protocol (ASAP)

	
Endpoint Handlespace Redundancy Protocol (ENRP)

Furthermore, statistics for application protocols provided by RSPLIB are provided as well:

	
Component Status Protocol (CSP)

	
CalcApp Protocol

	
Fractal Generator Protocol

	
Ping Pong Protocol

	
Scripting Service Protocol (SSP)

With these statistics you can:

	
Observed number of messages and bytes per message type.

	
The share of messages and bytes for each message type.

	
See the first and last occurrence of each message type.

	
See the interval between first and last occurrence of each message type (if there are at least 2 messages of the corresponding type).

	
See the message and byte rate within the interval for each message type (if there are at least 2 messages of the corresponding type).

See Thomas Dreibholz’s Reliable Server Pooling (RSerPool) Page and Chapter 3 of Reliable Server Pooling – Evaluation, Optimization and Extension of a Novel IETF Architecture for more details about RSerPool and its protocols.

[image: ws asap statistics]

Figure 93. ASAP Statistics window

[image: ws enrp statistics]

Figure 94. ENRP Statistics window

[image: ws csp statistics]

Figure 95. Component Status Protocol Statistics window

[image: ws calcappprotocol statistics]

Figure 96. CalcApp Protocol Statistics window

[image: ws fgp statistics]

Figure 97. Fractal Generator Protocol Statistics window

[image: ws pingpongprotocol statistics]

Figure 98. Ping Pong Protocol Statistics window

[image: ws ssp statistics]

Figure 99. Scripting Service Protocol Statistics window

F5

 In F5 Networks, TMM stands for Traffic Management Microkernel. It processes all load-balanced traffic on the BIG-IP system.

The F5 statistics menu shows packet and byte counts for both Virtual Server Distribution and tmm Distribution submenus.

Each Virtual Server Distribution window contains the statistics for the following data:

	
A line for each named virtual server name.

	
A line for traffic with a flow ID and no virtual server name.

	
A line for traffic without a flow ID.

Each tmm Distribution window contains the statistics for the following data:

	
A line for each tmm, which contains:

	
A line for each ingress and egress (should add to tmm total), which contains:

	
Traffic with a virtual server name.

	
Traffic with a flow ID and no virtual server name.

	
Traffic without a flow ID.

IPv4 Statistics

 Internet Protocol version 4 (IPv4) is a core protocol for the internet layer. It uses 32-bit addresses and allows packets routing from one source host to the next one.

The Statistics › IPv4 menu provides the packet counter by submenus:

	
All Addresses. Divides data by IP address.

	
Destination and Ports. Divides data by IP address, and further by IP protocol type, such as TCP, UDP, and others. It also shows port number.

	
IP Protocol Types. Divides data by IP protocol type.

	
Source TTLs. Divides data by source IP address and then by TTL. Also shows the destination IP address for each TTL value.

	
Source and Destination addresses. Divides data by source and destination IP address.

You can see similar statistics in the Statistics › Conversations and Statistics › Endpoints menus.

IPv6 Statistics

 Internet Protocol version 6 (IPv6) is a core protocol for the internet layer. It uses 128-bit addresses and routes internet traffic. Similar to IPv4 Statistics, the Statistics › IPv6 menu shows the packet counter in each submenu.

Telephony

Introduction

 Wireshark provides a wide range of telephony related network statistics which
can be accessed via the Telephony menu.

These statistics range from specific signaling protocols, to analysis of
signaling and media flows. If encoded in a compatible encoding the media flow
can even be played.

The protocol specific statistics windows display detailed information of
specific protocols and might be described in a later version of this document.

Some of these statistics are described at the
https://wiki.wireshark.org/Statistics pages.

Playing VoIP Calls

 The tool for playing VoIP calls is called RTP Player. It shows RTP streams and its waveforms, allows play stream and export it as audio or payload to file. Its capabilities depend on supported codecs.

Supported codecs

 RTP Player is able to play any codec supported by an installed plugin. The codecs supported by RTP Player depend on the version of Wireshark you’re using. The official builds contain all of the plugins maintained by the Wireshark developers, but custom/distribution builds might not include some of those codecs. To check your Wireshark installation’s installed codec plugins, do the following:

	
Open Help › About Wireshark window

	
Select the Plugins tab

	
In the Filter by type menu on the top-right, select codec

[image: ws about codecs]

Figure 100. List of supported codecs

Work with RTP streams - Playlist

 Wireshark can be used for RTP stream analysis. User can select one or more streams which can be played later. RTP Player window maintains playlist (list of RTP streams) for this purpose.

Playlist is created empty when RTP Player window is opened and destroyed when window is closed. RTP Player window can be opened on background when not needed and put to front later. During its live, playlist is maintained.

When RTP Player window is opened, playlist can be modified from other tools (Wireshark windows) in three ways:

	
button Play Streams › Set playlist clears existing playlist and adds streams selected in the tool.

	
button Play Streams › Add to playlist adds streams selected in the tool to playlist. Duplicated streams are not inserted again.

	
button Play Streams › Remove from playlist removes streams selected in the tool from playlist, if they are in the playlist.

[image: ws tel rtp player button]

Figure 101. Play Streams button with opened action menu

Play Streams button can be clicked directly and opens RTP Player window directly with Set playlist action. All actions can be selected with the small down arrow next to the button.

When the playlist is empty, there is no difference between Set playlist and Add to playlist. When the RTP Player window is not opened, all three actions above open it.

Remove from playlist is useful e.g. in case user selected all RTP streams and wants to remove RTP streams from specific calls found with VoIPCalls.

Tools below can be used to maintain content of playlist, they contain Play Streams button. You can use one of procedures (Note: Add to playlist action is demonstrated):

	
Open Telephony › RTP › RTP Streams window, it will show all streams in the capture. Select one or more streams and then press Play Streams. Selected streams are added to playlist.

	
Select any RTP packet in packet list, open Telephony › RTP › Stream Analysis window. It will show analysis of selected forward stream and its reverse stream (if Ctrl is pressed during window opening). Then press Play Streams. Forward and reverse stream is added to playlist.

	
RTP Stream Analysis window can be opened from other tools too.

	
Open Telephony › VoIP Calls or Telephony › SIP Flows window, it will show all calls. Select one or more calls and then press Play Streams. It will add all RTP streams related to selected calls to playlist.

	
Open Flow Sequence window in Telephony › VoIP Calls or Telephony › SIP Flows window, it will show flow sequence of calls. Select any RTP stream and then press Play Streams. It will add selected RTP stream to playlist.

[image: ws tel playlist]

Figure 102. Tools for modifying playlist in RTP Player window

Same approach with set/add/remove actions is used for RTP Stream Analysis window. The playlist is there handled as different tabs in the window, see RTP Stream Analysis window.

Playing audio during live capture

 Decoding RTP payload and showing waveforms is a time consuming task. To speed it up, the RTP Player window uses a copy of packet payload for all streams in the playlist. During live capture the dialog is not refreshed automatically as other Wireshark dialogs - the user must initiate it.

The copy is created or refreshed and dialog updated:

	
Every time window is opened.

	
Every time a new stream is added or set.

	
During live capture, when Refresh streams is pressed.

	
Every time live capture is finished/stopped by a user.

When capture file is opened (no live capturing), streams are read complete, no user action is required. Button Refresh streams is disabled as it is useless.

When live capture is running, streams are read only till "now" and are shown. When stream is continuous and user would like to see additional part, they must press Refresh stream. When the user ends live capture, view is refreshed and button is disabled.

RTP Player dialog stays open even when live capture is stopped and then started again. Play list stays unchanged. Therefore, Refresh stream tries to read same streams as before and shows them if they are still running. Past part of them (from previous live capture) is lost.

RTP Decoding Settings

 RTP is carried usually in UDP packets with random source and destination ports. Therefore, Wireshark can only recognize RTP streams based on VoIP signaling, e.g., based on SDP messages in SIP signaling. If signaling is not captured, Wireshark shows just UDP packets. However, there are multiple settings which help Wireshark recognize RTP even when there is no related signaling.

You can use Decode As…​ function from Analyze › Decode As…​ menu or in mouse context menu. Here you can set that traffic on specific source or destination should be decoded as RTP. You can save settings for later use.

Use of Decode As…​ menu works fine, but is arduous if you have many streams.

You can enable heuristic dissector rtp_udp in Analyze › Enabled Protocols…​. See Control Protocol Dissection for details. Once rtp_udp is enabled, Wireshark tries to decode every UDP packet as RTP. If decoding is possible, packet (and entire UDP stream) is decoded as RTP.

When an RTP stream uses a well-known port, the heuristic dissector ignores it. So you might miss some RTP streams. You can enable setting for udp protocol Preferences › Protocols › udp › Try heuristic sub-dissectors first, see Preferences. In this case heuristics dissector tries to decode UDP packet even it uses a well-known port.

Take into account that heuristics is just a simple "test" of whether a packet can be read as RTP. Because of false positives, you can see decoded as RTP more UDP packets than expected.

When you enable udp › Try heuristic sub-dissectors first, it increases the possibility of false positives. If you capture all traffic in network, false positives rate can be quite high.

RTP Player must store decoded data somewhere to be able to play it. When data are decoded, there are audio samples and dictionary for fast navigation. Both types of data are stored in memory for default, but you can configure Wireshark to store it on disk. There are two settings (which you may access from Edit › Preferences Advanced from the main menu).

	
ui.rtp_player_use_disk1 - When set to FALSE (default), audio samples are kept in memory. When set to TRUE, audio samples are stored on temporary file.

	
ui.rtp_player_use_disk2 - When set to FALSE (default), dictionary is kept in memory. When set to TRUE, dictionary is stored on temporary file.

When any data are configured to be stored on disk, one file is created for each stream. Therefore, there might be up to two files for one RTP stream (audio samples and dictionary). If your OS or user has OS enforced limit for count of opened files (most of Unix/Linux systems), you may see fewer streams than were added to playlist. Warnings are printed on console - in this case and you will see fewer streams in the playlist than you send to it from other tools.

For common use you can use default settings - store everything in memory. When you will be out of memory, switch ui.rtp_player_use_disk1 to TRUE first - it saves much more memory than ui.rtp_player_use_disk2.

VoIP Processing Performance and Related Limits

 Processing of RTP and decoding RTP voice takes resources. There are raw estimates you can use as guidelines…​

RTP Streams window can show as many streams as found in the capture. Its performance is limited just by memory and CPU.

RTP Player can handle 1000+ streams, but take into account that waveforms are very small and difficult to recognize in this case.

RTP Player plays audio by OS sound system and OS is responsible for mixing audio when multiple streams are played. In many cases OS sound system has limited count of mixed streams it can play/mix. RTP Player tries to handle playback failures and show warning. If it happens, just mute some streams and start playback again.

RTP Analysis window can handle 1000+ streams, but it is difficult to use it with so many streams - it is difficult to navigate between them. It is expected that RTP Analysis window will be used for analysis of lower tens of streams.

VoIP Calls Window

 The VoIP Calls window shows a list of all detected VoIP calls in the captured
traffic. It finds calls by their signaling and shows related RTP streams. The current VoIP supported protocols are:

	
H.323

	
IAX2

	
ISUP

	
MGCP/MEGACO

	
SIP

	
SKINNY

	
UNISTIM

See VOIPProtocolFamily for an overview of the used VoIP protocols.

VoIP Calls window can be opened as window showing all protocol types (Telephony › VoIP Calls window) or limited to SIP messages only (Telephony › SIP Flows window).

[image: ws tel voip calls]

Figure 103. VoIP Calls window

User can use shortcuts:

	
Selection

	
Ctrl+A - Select all streams

	
Ctrl+I - Invert selection

	
Ctrl+Shift+A - Select none

	
Note: Common Mouse click, Shift+Mouse click and Ctrl+Mouse click works too

	
On selected call/calls

	
S - Selects stream/streams related to call in RTP Streams window (if not opened, it opens it and put it on background).

	
D - Deselects stream/streams related to call in RTP Streams window (if not opened, it opens it and put it on background).

Available controls are:

	
Limit to display filter filters calls just to ones matching display filter. When display filter is active before window is opened, checkbox is checked.

	
Time of Day switches format of shown time between relative to start of capture or absolute time of received packets.

	
Flow Sequence opens Flow Sequence window and shows selected calls in it.

	
Prepare Filter generates display filter matching to selected calls (signaling and RTP streams) and apply it.

	
Play Streams opens RTP Player window. Actions Set, Add and Remove are available.

	
Copy copies information from table to clipboard in CSV or YAML.

ANSI

 This menu shows groups of statistic data for mobile communication protocols according to ETSI GSM standards.

A-I/F BSMAP Statistics Window

 The A-Interface Base Station Management Application Part (BSMAP) Statistics window shows the messages list and the number of the captured messages. There is a possibility to filter the messages, copy or save the date into a file.

A-I/F DTAP Statistics Window

 The A-Interface Direct Transfer Application Part (DTAP) Statistics widow shows the messages list and the number of the captured messages. There is a possibility to filter the messages, copy or save the date into a file.

GSM Windows

 The Global System for Mobile Communications (GSM) is a standard for mobile networks. This menu shows a group of statistic data for mobile communication protocols according to ETSI GSM standard.

IAX2 Stream Analysis Window

 The “IAX2 Stream Analysis” window shows statistics for the forward and reverse
streams of a selected IAX2 call along with a graph.

ISUP Messages Window

 Integrated Service User Part (ISUP) protocol provides voice and non-voice signaling for telephone communications. ISUP Messages menu opens the window which shows the related statistics. The user can filter, copy or save the data into a file.

3GPP Uu

3GPP MAC Traffic Statistics Window

 Statistics of the captured LTE or NR MAC traffic. This window will summarize the
MAC traffic found in the capture.

[image: ws stats lte mac traffic]

Figure 104. The “3GPP MAC Traffic Statistics” window

Each row in the top pane
shows statistical highlights for exactly one UE/C-RNTI. Opening a UE item shows details of each logical channel identifier of that UE.

The bottom pane shows statistics for common channels, and controls to apply more detailed display filters to the packet list.

3GPP RLC Graph Window

 The RLC Graph menu launches a graph which shows LTE/NR Radio Link Control protocol sequence numbers changing over time along with (for AM) acknowledgements
received in the opposite direction.

That graph shows data of a single bearer and direction. This graph may also be launched from the “RLC Statistics” window.

[image: ws rlc graph]

Figure 105. The RLC Graph window

The image of the RLC Graph is borrowed from the Wireshark wiki.

RLC Statistics Window

 Statistics of the captured LTE/NR RLC traffic. This window will summarize the
RLC traffic found in the capture.

[image: ws stats lte rlc traffic]

Figure 106. The “LTE RLC Traffic Statistics” window

A check-box controls whether this window should include RLC PDUs logged within
MAC PDUs or not. This will affect both the PDUs counted as well as the display
filters generated (see below).

The upper list shows summaries of each active UE. Opening up a UE entry will
show the same information broken down by individual bearers.

The lower part of the windows allows display filters to be generated and set for
the selected bearer/channel. Note that in the case of Acknowledged Mode channels, if a
single direction is chosen, the generated filter will show data in that
direction and control PDUs in the opposite direction.

MTP3 Windows

 The Message Transfer Part level 3 (MTP3) protocol is a part of the Signaling System 7 (SS7). The Public Switched Telephone Networks use it for reliable, unduplicated and in-sequence transport of SS7 messaging between communication partners.

This menu shows MTP3 Statistics and MTP3 Summary windows.

Osmux Windows

 OSmux is a multiplex protocol designed to reduce bandwidth usage of satellite-based GSM systems’s voice (RTP-AMR) and signaling traffic. The OSmux menu opens the packet counter window with the related statistic data. The user can filter, copy or save the data into a file.

RTP

RTP Streams Window

 The RTP streams window shows all RTP streams in capture file. Streams can be selected there and on selected streams other tools can be initiated.

[image: ws tel rtp streams]

Figure 107. The “RTP Streams” window

User can use shortcuts:

	
Selection

	
Ctrl+A - Select all streams

	
Ctrl+I - Invert selection

	
Ctrl+Shift+A - Select none

	
Note: Common Mouse click, Shift+Mouse click and Ctrl+Mouse click works too

	
Find Reverse

	
R - Try search for reverse streams related to already selected streams. If found, selects them in the list too.

	
Shift+R - Select all pair streams (forward/reverse relation).

	
Ctrl+R - Select all single streams (no reverse stream does exist).

	
G - Go to packet of stream under the mouse cursor.

	
M - Mark all packets of selected streams.

	
P - Prepare filter matching selected streams and apply it.

	
E - Export selected streams in RTPDump format.

	
A - Open RTP Stream Analysis window and add selected streams to it.

Available controls are:

	
Find Reverse

	
Find Reverse search for reverse stream of every selected stream. If found, selects it in the list too.

	
Find All Pairs select all streams which have forward/reverse relation.

	
Find Only Single select all streams which are single - have no reverse stream.

	
Analyze opens RTP Stream Analysis window. Actions Set, Add and Remove are available.

	
Prepare Filter prepares filter matching selected streams and apply it.

	
Play Streams opens RTP Player window. Actions Set, Add and Remove are available.

	
Copy copies information from table to clipboard in CSV or YAML.

	
Export exports selected streams in RTPDump format.

RTP Stream Analysis Window

 The RTP analysis function takes the selected RTP streams and generates a list of
statistics on them including a graph.

The Telephony › RTP › RTP Stream Analysis menu item is enabled only when the
selected packet is an RTP packet. When the action is selected, the RTP Stream
Analysis window is opened (if not already) and the RTP stream of the current
packet is added for analysis. If Ctrl is pressed when selecting the
menu item, other RTP streams on the same addresses and ports (in both forward
and reverse direction) are scanned for and added to the window too if found.

Every stream is shown on its own tab. Tabs are numbered as streams are added
and each tooltip shows the identification of the stream. When a tab is closed,
its number is not reused. The tab color matches the color of the corresponding
graph on the graph tab.

[image: ws tel rtpstream analysis 1]

Figure 108. The “RTP Stream Analysis” window

[image: ws tel rtpstream analysis 3]

Figure 109. Error indicated in “RTP Stream Analysis” window

Per packet statistic shows:

	
Packet number

	
Sequence number

	
Delta (ms) to last packet

	
Jitter (ms)

	
Skew

	
Bandwidth

	
Marker - packet is marked in RTP header

	
Status - information related to the packet. E. g. change of codec, DTMF number, warning about incorrect sequence number.

Side panel left to packet list shows stream statistics:

	
Maximal delta and at which packet it occurred

	
Maximal jitter

	
Mean jitter

	
Maximal skew

	
Count of packets

	
Count of lost packets - calculated from sequence numbers

	
When the stream starts and first packet number

	
Duration of the stream

	
Clock drift

	
Frequency drift

Some statistic columns are calculated only when Wireshark is able to decode codec of RTP stream.

Available shortcuts are:

	
G - Go to selected packet of stream in packet list

	
N - Move to next problem packet

Available controls are:

	
Prepare Filter

	
Current Tab prepares filter matching current tab and applies it.

	
All Tabs prepares filter matching all tabs and applies it.

	
Play Streams opens RTP Player window. Actions Set, Add and Remove are available.

	
Export allows export current stream or all streams as CSV or export graph as image in multiple different formats (PDF, PNG, BMP and JPEG).

[image: ws tel rtpstream analysis 2]

Figure 110. Graph in “RTP Stream Analysis” window

Graph view shows graph of:

	
jitter

	
difference - absolute value of difference between expected and real time of packet arrival

	
delta - time difference from reception of previous packet

for every stream. Checkboxes below graph are enabling or disabling showing of a graph for every stream. Stream X checkbox enables or disables all graphs for the stream.

Stream Analysis window contained tool for save audio and payload for analyzed streams. This tool was moved in Wireshark 3.5.0 to RTP Player window. New tool has more features.

RTP Player Window

 The RTP Player function is a tool for playing VoIP calls. It shows RTP streams
and their waveforms, and can play the streams and export them to file as audio
or raw payload. See related concepts in Playing VoIP Calls.

The Telephony › RTP › RTP Player menu item is enabled only when the
selected packet is an RTP packet. When the action is selected, the RTP Player
window is opened (if not already) and the RTP stream of the current packet is
added to the playlist. If Ctrl is pressed when selecting the menu item,
other RTP streams on the same addresses and ports (in both forward and reverse
direction) are scanned for and added to the playlist too if found.

[image: ws tel rtp player 1]

Figure 111. RTP Player window

RTP Player Window consists of three parts:

	
Waveform view

	
Playlist

	
Controls

Waveform view shows visual presentation of RTP stream. Color of waveform and playlist row are matching. Height of wave shows volume.

Waveform shows error marks for Out of Sequence, Jitter Drops, Wrong Timestamps and Inserted Silence marks if it happens in a stream.

[image: ws tel rtp player 3]

Figure 112. Waveform with error marks

Playlist shows information about every stream:

	
Play - Audio routing

	
Source Address, Source Port, Destination Address, Destination Port, SSRC

	
Setup Frame

	
SETUP <number> is shown, when there is known signaling packet. Number is packet number of signaling packet. Note: Word SETUP is shown even RTP stream was initiated e. g. by SKINNY where no SETUP message exists.

	
RTP <number> is shown, when no related signaling was found. Number is packet number of first packet of the stream.

	
Packets - Count of packets in the stream.

	
Time Span - Start - Stop (Duration) of the stream

	
SR - Sample rate of used codec

	
PR - Decoded play rate used for stream playing

	
Payloads - One or more payload types used by the stream

When rtp_udp is active, most of streams shows just RTP <number> even there is setup frame in capture.

When RTP stream contains multiple codecs, SR and PR is based on first observed coded. Later codecs in stream are resampled to first one.

Controls allow a user to:

	
Start/Pause/Stop playing of unmuted streams

	
>> enabling/disabling silence skipping

	
Min silence - Minimal duration of silence to skip in seconds. Shorter silence is played as it is.

	
Select Output audio device and Output audio rate

	
Select Playback Timing

	
Jitter Buffer - Packets outside Jitter Buffer size are discarded during decoding

	
RTP Timestamp - Packets are ordered and played by its Timestamp, no Jitter Buffer is used

	
Uninterrupted Mode - All gaps (e. g. Comfort Noise, lost packets) are discarded therefore audio is shorted than timespan

	
Time of Day selects whether waveform timescale is shown in seconds from start of capture or in absolute time of received packets

	
Refresh streams refreshes streams during live capture (see Playing audio during live capture). Button is disabled when no live capture is running.

	
Inaudible streams

	
Select select all inaudible streams (streams with zero play rate)

	
Deselect deselect all inaudible streams (streams with zero play rate)

	
Analyze open RTP Stream Analysis window. Actions Set, Add and Remove are available.

	
Prepare Filter prepare filter matching selected streams and apply it.

	
Export - See Export.

RTP Player detects silence just by missing voice samples (Comfort Noise, interrupted RTP, missing RTP, …​) or when some streams are muted.

[image: ws tel rtp player 2]

Figure 113. RTP stream state indication

Waveform view and playlist shows state of a RTP stream:

	
stream is muted (dashed waveform, Muted is shown in Play column) or unmuted (non-dashed waveform, audio routing is shown in Play column)

	
stream is selected (blue waveform, blue row)

	
stream is below mouse cursor (bold waveform, bold font)

User can control to where audio of a stream is routed to:

	
L - Left channel

	
L+R - Left and Right (Middle) channel

	
R - Left channel

	
P - Play (when mono soundcard is available only)

	
M - Muted

Audio routing can be changed by double-clicking on first column of a row, by shortcut or by menu.

User can use shortcuts:

	
Selection

	
Ctrl+A - Select all streams

	
Ctrl+I - Invert selection

	
Ctrl+Shift+A - Select none

	
Note: Common Mouse click, Shift+Mouse click and Ctrl+Mouse click works too

	
Go to packet

	
G - Go to packet of stream under the mouse cursor

	
Shift+G - Go to setup packet of stream under the mouse cursor

	
Audio routing

	
M - Mute all selected streams

	
Shift+M - Unmute all selected streams

	
Ctrl+M - Invert muting of all selected streams

	
P - Play audio

	
S - Stop playing

	
Del or Ctrl+X - Remove all selected streams from playlist

	
Inaudible steams

	
N - Select all inaudible streams

	
Shift+N - Deselect all inaudible streams

Export

Export was moved from RTP Stream Analysis window to RTP Player window in 3.5.0.

Wireshark is able to export decoded audio in .au or .wav file format. Prior to version 3.2.0, Wireshark only supported exporting audio using the G.711 codec. From 3.2.0 it supports audio export using any codec with 8000 Hz sampling. From 3.5.0 is supported export of any codec, rate is defined by Output Audio Rate.

Export options available:

	
for one or more selected non-muted streams

	
From cursor - Streams are saved from play start cursor. If some streams are shorter, they are removed from the list before save and count of saved streams is lower than count of selected streams.

	
Stream Synchronized Audio - File starts at the begin of earliest stream in export, therefore there is no silence at beginning of exported file.

	
File Synchronized Audio - Streams starts at beginning of file, therefore silence can be at start of file.

	
for just one selected stream

	
Payload - just payload with no information about coded is stored in the file

Audio is exported as multi-channel file - one channel per RTP stream. One or two channels are equal to mono or stereo, but Wireshark can export e.g., 100 channels. For playing a tool with multi-channel support must be used (e.g., https://www.audacityteam.org/).

Export of payload function is useful for codecs not supported by Wireshark.

Default value of Output Audio Rate is Automatic. When multiple codecs with different codec rates are captured, Wireshark decodes each stream with its own play audio rate. Therefore, each stream can have a different audio rate. If you attempt to export audio when there are multiple audio rates, it will fail because .au or .wav require a fixed audio rate.

In this case user must manually select one of rates in Output Audio Rate, streams will be resampled and audio export succeeds.

RTSP Window

 In the Real Time Streaming Protocol (RTSP) menu the user can check the Packet Counter window. It shows Total RTCP Packets and divided into RTSP Response Packets, RTSP Request Packets and Other RTSP packets. The user can filter, copy or save the data into a file.

SCTP Windows

 Stream Control Transmission Protocol (SCTP) is a computer network protocol which provides a message transfer in telecommunication in the transport layer. It overcomes some lacks of User Datagram Protocol (UDP) and Transmission Control Protocol (TCP). The SCTP packets consist of the common header and the data chunks.

The SCTP Analyze Association window shows the statistics of the captured packets between two Endpoints. You can check the different chunk types by pressing Chunk Statistics button in the Statistics tab. In the Endpoint tabs you can see various statistics, such as IP addresses, ports and others. You can also check different graphs here.

[image: ws sctp 1 association]

Figure 114. SCTP Analyze Association window

The SCTP Associations window shows the table with the data for captured packets, such as port and counter. You can also call for the SCTP Analyze Association window by pressing the Analyze button.

[image: ws sctp]

Figure 115. SCTP Associations window

SMPP Operations Window

 Short Message Peer-to-Peer (SMPP) protocol uses TCP protocol as its transfer for exchanging Short Message Service (SMS) Messages, mainly between Short Message Service Centers (SMSC). The dissector determines whether the captured packet is SMPP or not by using the heuristics in the fixed header. The SMPP Operations window displays the related statistical data. The user can filter, copy or save the data into a file.

UCP Messages Window

 The Universal Computer Protocol (UCP) plays role in transferring Short Messages between a Short Message Service Centre (SMSC) and an application, which is using transport protocol, such as TCP or X.25. The UCP Messages window displays the related statistical data. The user can filter, copy or save the data into a file.

F1AP Messages Window

 F1AP is used to exchange signaling and user-plane data between CU and DU nodes as part of an O-RAN network. This window counts how many messages of each type are seen.

NGAP Messages Window

 NGAP messages are exchanged between a gNB and core network. This window counts how many messages of each type are seen.

E2AP Messages Window

 E2AP is used to configure and query nodes in an O-RAN network. This window counts how many messages of each type are seen.

H.225 Window

 H.225 telecommunication protocol which is responsible for messages in call signaling and media stream packetization for packet-based multimedia communication systems. The H.225 window shows the counted messages by types and reasons. The user can filter, copy or save the data into a file.

SIP Flows Window

 Session Initiation Protocol (SIP) Flows window shows the list of all captured SIP transactions, such as client registrations, messages, calls and so on.

This window will list both complete and in-progress SIP transactions.

Window has same features as VoIP Calls window.

SIP Statistics Window

 SIP Statistics window shows captured SIP transactions. It is divided into SIP Responses and SIP Requests. In this window the user can filter, copy or save the statistics into a file.

WAP-WSP Packet Counter Window

 The WAP-WSP Packet Counter menu displays the number of packets for each Status Code and PDU Type in Wireless Session Protocol traffic. The user can filter, copy or save the data into a file.

Wireless

Introduction

 The Wireless menu provides access to statistics related to wireless traffic.
For configuring keys to decrypt wireless traffic, see IEEE 802.11 WLAN Decryption Keys

Bluetooth ATT Server Attributes

 Bluetooth ATT Server Attributes window displays a list of captured Attribute Protocol (ATT) packets. The user can filter the list by the interfaces or devices, and also exclude repetitions by checking the Remove duplicates check box.

Handle is a unique attribute which is specific to the device.

UUID is a value which defines a type of an attribute.

UUID Name is a specified name for the captured packet.

Bluetooth Devices

 The Bluetooth Devices window displays the list of the captured information about devices, such as MAC address, Organizationally Unique Identifier (OUI), Name and other. Users can filter it by interface.

[image: ws bluetooth devices]

Figure 116. Bluetooth Devices window

Bluetooth HCI Summary

 The Bluetooth HCI Summary window displays the summary for the captured Host Controller Interface (HCI) layer packets. This window allows users to apply filters and choose to display information about specific interfaces or devices.

[image: ws bt hci summary]

Figure 117. Bluetooth HCI Summary window

WLAN Traffic

 Statistics about captured WLAN traffic. This can be found under the
Wireless menu and summarizes the wireless network traffic found
in the capture. Probe requests will be merged into an existing network
if the SSID matches.

[image: ws stats wlan traffic]

Figure 118. The “WLAN Traffic Statistics” window

Each row in the list shows the statistical values for exactly one wireless
network.

Name resolution will be done if selected in the window and if it is active for
the MAC layer.

Only show existing networks will exclude probe requests with a SSID not
matching any network from the list.

The Copy button will copy the list values to the clipboard in CSV (Comma
Separated Values) format.

This window will be updated frequently, so it will be useful, even if you open
it before (or while) you are doing a live capture.

Customizing Wireshark

Introduction

 Wireshark’s default behavior will usually suit your needs pretty well. However,
as you become more familiar with Wireshark, it can be customized in various ways
to suit your needs even better. In this chapter we explore:

	
How to start Wireshark with command line parameters

	
How to colorize the packet list

	
How to control protocol dissection

	
How to use the various preference settings

Start Wireshark from the command line

 You can start Wireshark from the command line, but it can also be started from
most Window managers as well. In this section we will look at starting it from
the command line.

Wireshark supports a large number of command line parameters. To see what they
are, simply enter the command wireshark -h and the help information shown in
Help information available from Wireshark (or something similar) should be printed.

Listing 9. Help information available from Wireshark
 Wireshark 4.5.0 (v4.5.0rc0-1896-g8ec46c963ceb)
Interactively dump and analyze network traffic.
See https://www.wireshark.org for more information.

Usage: wireshark [options] ... [<infile>]

Capture interface:
 -i <interface>, --interface <interface>
 name or idx of interface (def: first non-loopback)
 -f <capture filter> packet filter in libpcap filter syntax
 -s <snaplen>, --snapshot-length <snaplen>
 packet snapshot length (def: appropriate maximum)
 -p, --no-promiscuous-mode
 don't capture in promiscuous mode
 -I, --monitor-mode capture in monitor mode, if available
 -B <buffer size>, --buffer-size <buffer size>
 size of kernel buffer in MiB (def: 2MiB)
 -y <link type>, --linktype <link type>
 link layer type (def: first appropriate)
 --time-stamp-type <type> timestamp method for interface
 -D, --list-interfaces print list of interfaces and exit
 -L, --list-data-link-types
 print list of link-layer types of iface and exit
 --list-time-stamp-types print list of timestamp types for iface and exit

Capture display:
 -k start capturing immediately (def: do nothing)
 -S update display when new items are captured
 -l turn on automatic scrolling while -S is in use
 --update-interval interval between updates with new items, in milliseconds (def: 100ms)
Capture stop conditions:
 -c <item count> stop after n items (def: infinite)
 -a <autostop cond.> ..., --autostop <autostop cond.> ...
 duration:NUM - stop after NUM seconds
 filesize:NUM - stop this file after NUM KB
 files:NUM - stop after NUM files
 packets:NUM - stop after NUM packets
Capture output:
 -b <ringbuffer opt.> ..., --ring-buffer <ringbuffer opt.>
 duration:NUM - switch to next file after NUM secs
 filesize:NUM - switch to next file after NUM KB
 files:NUM - ringbuffer: replace after NUM files
 packets:NUM - switch to next file after NUM packets
 interval:NUM - switch to next file when the time is
 an exact multiple of NUM secs
Input file:
 -r <infile>, --read-file <infile>
 set the filename to read from (no pipes or stdin!)

Processing:
 -R <read filter>, --read-filter <read filter>
 filter in display filter (wireshark-filter(4)) syntax
 -n disable all name resolutions (def: all enabled)
 -N <name resolve flags> enable specific name resolution(s): "mtndsNvg"
 -d <layer_type>==<selector>,<decode_as_protocol> ...
 "Decode As", see the man page for details
 Example: tcp.port==8888,http
 --enable-protocol <proto_name>
 enable dissection of proto_name
 --disable-protocol <proto_name>
 disable dissection of proto_name
 --only-protocols <protocols>
 Only enable dissection of these protocols, comma
 separated. Disable everything else
 --disable-all-protocols
 Disable dissection of all protocols
 --enable-heuristic <short_name>
 enable dissection of heuristic protocol
 --disable-heuristic <short_name>
 disable dissection of heuristic protocol

User interface:
 -C <config profile> start with specified configuration profile
 -H hide the capture info dialog during capture
 -Y <display filter>, --display-filter <display filter>
 start with the given display filter
 -g <item number> go to specified item number after "-r"
 -J <jump filter> jump to the first item matching the display
 filter
 -j search backwards for a matching item after "-J"
 -t (a|ad|adoy|d|dd|e|r|u|ud|udoy)[.[N]]|.[N]
 format of time stamps (def: r: rel. to first)
 -u s|hms output format of seconds (def: s: seconds)
 -X <key>:<value> eXtension options, see man page for details
 -z <statistics> show various statistics, see man page for details

Output:
 -w <outfile|-> set the output filename (or '-' for stdout)
 -F <capture type> set the output file type; default is pcapng.
 an empty "-F" option will list the file types.
 --capture-comment <comment>
 add a capture file comment, if supported
 --temp-dir <directory> write temporary files to this directory
 (default: /tmp)

Diagnostic output:
 --log-level <level> sets the active log level ("critical", "warning", etc.)
 --log-fatal <level> sets level to abort the program ("critical" or "warning")
 --log-domains <[!]list> comma-separated list of the active log domains
 --log-fatal-domains <list>
 list of domains that cause the program to abort
 --log-debug <[!]list> list of domains with "debug" level
 --log-noisy <[!]list> list of domains with "noisy" level
 --log-file <path> file to output messages to (in addition to stderr)

Miscellaneous:
 -h, --help display this help and exit
 -v, --version display version info and exit
 -P <key>:<path> persconf:path - personal configuration files
 persdata:path - personal data files
 -o <name>:<value> ... override preference or recent setting
 -K <keytab> keytab file to use for kerberos decryption
 --display <X display> X display to use
 --fullscreen start Wireshark in full screen

We will examine each of the command line options in turn.

The first thing to notice is that issuing the command wireshark by itself will
launch Wireshark. However, you can include as many of the command line
parameters as you like. Their meanings are as follows (in alphabetical order):

	
-a <capture autostop condition>

	
--autostop <capture autostop condition>

	
Specify a criterion that specifies when Wireshark is to stop writing
to a capture file. The criterion is of the form test:value, where test
is one of:

	
duration:value

	
Stop writing to a capture file after value of seconds have elapsed.

	
filesize:value

	
Stop writing to a capture file after it reaches a size of value
kilobytes (where a kilobyte is 1000 bytes, not 1024 bytes). If
this option is used together with the -b option, Wireshark will
stop writing to the current capture file and switch to the next
one if filesize is reached.

	
files:value

	
Stop writing to capture files after value number of files were
written.

	
packets:value

	
Stop writing to a capture file after value number of packets were written.

	
-b <capture ring buffer option>

	
If a maximum capture file size was specified, this option causes Wireshark to
run in “ring buffer” mode, with the specified number of files. In “ring
buffer” mode, Wireshark will write to several capture files. Their
name is based on the number of the file and on the creation date and
time.
When the first capture file fills up Wireshark will switch to writing
to the next file, and so on. With the files option it’s
also possible to form a “ring buffer.” This will fill up new files until the
number of files specified, at which point the data in the first file will be
discarded so a new file can be written.

If the optional duration is specified, Wireshark will also
switch to the next file when the specified number of seconds has elapsed even
if the current file is not completely filled up.

	
duration:value

	
Switch to the next file after value seconds have elapsed, even
if the current file is not completely filled up.

	
filesize:value

	
Switch to the next file after it reaches a size of value kilobytes
(where a kilobyte is 1000 bytes, not 1024 bytes).

	
files:value

	
Begin again with the first file after value number of files were
written (form a ring buffer).

	
packets:value

	
Switch to the next file after value number of packets were written, even
if the current file is not completely filled up.

	
interval:value

	
Switch to the next file when the time is an exact multiple of value seconds.

	
-B <capture buffer size>

	
--buffer-size <capture buffer size>

	
Set capture buffer size (in MB, default is 2MB). This is used by the capture
driver to buffer packet data until that data can be written to disk. If you
encounter packet drops while capturing, try to increase this size. Not supported
on some platforms.

	
-C <config profile>

	
Start with the specified configuration profile.

	
-c <capture packet count>

	
This option specifies the maximum number of packets to capture when capturing
live data. It would be used in conjunction with the -k option.

	
--capture-comment <comment>

	
Add the comment string to the capture file, if supported by the file format.

	
-d <layer_type>==<selector>,<decode_as_dissector>

	
"Decode As": override what protocol is called under specific circumstances.
See User Specified Decodes for details about how this feature works.
An example of causing TCP traffic on port 8888 to be decoded as HTTP:

 wireshark -d tcp.port==8888,http

To see all possible values for <layer_type>, run Wireshark or tshark with -d help.
You can see all possible values for <decode_as_dissectors> by running
tshark -G dissectors but note that not all dissectors can be used at all layers.

	
-D

	
--list-interfaces

	
Print a list of the interfaces on which Wireshark can capture, then exit. For
each network interface, a number and an interface name, possibly followed by a
text description of the interface, is printed. The interface name or the number
can be supplied to the -i flag to specify an interface on which to capture.
This can be useful on systems that don’t have a command to list them (e.g.,
Windows systems, or UNIX systems lacking ifconfig -a). The number can be
especially useful on Windows, where the interface name is a GUID.

Note that “can capture” means that Wireshark was able to open that device to
do a live capture. If, on your system, a program doing a network capture must be
run from an account with special privileges, then, if
Wireshark is run with the -D flag and is not run from such an account, it will
not list any interfaces.

	
--display <DISPLAY>

	
Set the X display to use, instead of the one defined in the environment, or
the default display.

	
--enable-protocol <proto_name>

	
--disable-protocol <proto_name>

	
Enable and disable the dissection of the protocol.

	
--enable-heuristic <short_name>

	
--disable-heuristic <short_name>

	
Enable and disable the dissection of the heuristic protocol.

	
-f <capture filter>

	
This option sets the initial capture filter expression to be used when capturing
packets.

	
--fullscreen

	
Start Wireshark in full screen.

	
-g <packet number>

	
After reading in a capture file using the -r flag, go to the given packet
number.

	
-h

	
--help

	
This option requests Wireshark to print its version and usage instructions
(as shown here) and exit.

	
-H

	
Hide the capture info dialog during live packet capture.

	
-i <capture interface>

	
--interface <capture interface>

	
Set the name of the network interface or pipe to use for live packet capture.
Network interface names should match one of the names listed in wireshark -D
(described above). A number, as reported by wireshark -D, can also be used. If
you’re using UNIX, netstat -i, ifconfig -a or ip link might also work to
list interface names, although not all versions of UNIX support the -a flag to
ifconfig.

If no interface is specified, Wireshark searches the list of interfaces,
choosing the first non-loopback interface if there are any non-loopback
interfaces, and choosing the first loopback interface if there are no
non-loopback interfaces; if there are no interfaces, Wireshark reports an error
and doesn’t start the capture.

Pipe names should be either the name of a FIFO (named pipe) or “-” to read
data from the standard input. Data read from pipes must be in standard libpcap
format.

	
-J <jump filter>

	
After reading in a capture file using the -r flag, jump to the first packet
which matches the filter expression. The filter expression is in display filter
format. If an exact match cannot be found the first packet afterwards is
selected.

	
-I

	
--monitor-mode

	
Capture wireless packets in monitor mode if available.

	
-j

	
Use this option after the -J option to search backwards for a first packet to
go to.

	
-k

	
The -k option specifies that Wireshark should start capturing packets
immediately. This option requires the use of the -i parameter to specify the
interface that packet capture will occur from.

	
-K <keytab file>

	
Use the specified file for Kerberos decryption.

	
-l

	
This option turns on automatic scrolling if the packet list pane is being
updated automatically as packets arrive during a capture (as specified by the
-S flag).

	
-L

	
--list-data-link-types

	
List the data link types supported by the interface and exit.

	
--list-time-stamp-types

	
List timestamp types configurable for the interface and exit.

	
-m

	
This option sets the name of the font used for most text displayed by Wireshark.

	
-n

	
Disable network object name resolution (such as hostname, TCP and UDP port
names).

	
-N <name resolving flags>

	
Turns on name resolving for particular types of addresses and port numbers. The
argument is a string that may contain the following letters:

	
N

	
Use external name resolver.

	
d

	
Enable name resolution from captured DNS packets.

	
m

	
Enable MAC address resolution.

	
n

	
Enable network address resolution.

	
t

	
Enable transport layer port number resolution.

	
v

	
Enable VLAN ID resolution.

	
-o <preference or recent settings>

	
Sets a preference or recent value, overriding the default value and any value
read from a preference or recent file. The argument to the flag is a string of
the form prefname:value, where prefname is the name of the preference (which
is the same name that would appear in the preferences or recent file), and
value is the value to which it should be set. Multiple instances of `-o
<preference settings> ` can be given on a single command line.

Preferences and Profiles

The preferences you specify on the command line will override any settings
you have changed in any of your profiles; this includes when switching from
one profile to another.

If you change a setting using the Preferences dialog
(see Preferences) that you have also set on the command line,
the command line option will then be ignored, and the setting will change
as normal when you switch profiles.

An example of setting a single preference would be:

 wireshark -o mgcp.display_dissect_tree:TRUE

An example of setting multiple preferences would be:

 wireshark -o mgcp.display_dissect_tree:TRUE -o mgcp.udp.callagent_port:2627

You can get a list of all available preference strings from the
preferences file. See [AppFiles] for details.

User Accessible Tables (UATs) can be overridden using “uat:”
followed by the UAT file name (not the preference name)
and a valid record for the file:

 wireshark -o "uat:user_dlts:\"User 0 (DLT=147)\",\"http\",\"0\",\"\",\"0\",\"\""

The example above would dissect packets with a libpcap data link type 147 as
HTTP, just as if you had configured it in the DLT_USER protocol preferences.

You can only add UAT entries from the command line. You can not
modify or remove existing entries in a UAT in this way.

	
-p

	
--no-promiscuous-mode

	
Don’t put the interface into promiscuous mode. Note that the interface might be
in promiscuous mode for some other reason. Hence, -p cannot be used to ensure
that the only traffic that is captured is traffic sent to or from the machine on
which Wireshark is running, broadcast traffic, and multicast traffic to
addresses received by that machine.

	
-P <path setting>

	
Special path settings usually detected automatically. This is used for special
cases, e.g., starting Wireshark from a known location on an USB stick.
The criterion is of the form key:path, where key is one of:

	
persconf:path

	
Path of personal configuration files, like the preferences files.

	
persdata:path

	
Path of personal data files, it’s the folder initially opened. After the
initialization, the recent file will keep the folder last used.

	
-r <infile>

	
--read-file <infile>

	
This option provides the name of a capture file for Wireshark to read and
display. This capture file can be in one of the formats Wireshark understands.

	
-R <read (display) filter>

	
--read-filter <read (display) filter>

	
This option specifies a display filter to be applied when reading packets from a
capture file. The syntax of this filter is that of the display filters discussed
in Filtering Packets While Viewing. Packets not matching the filter
are discarded.

	
-s <capture snapshot length>

	
--snapshot-length <capture snapshot length>

	
This option specifies the snapshot length to use when capturing packets.
Wireshark will only capture snaplen bytes of data for each packet.

	
-S

	
This option specifies that Wireshark will display packets as it captures them.
This is done by capturing in one process and displaying them in a separate
process. This is the same as “Update list of packets in real time” in the
“Capture Options” dialog box.

	
-t <time stamp format>

	
This option sets the format of packet timestamps that are displayed in the
packet list window. The format can be one of:

	
r

	
Relative, which specifies timestamps are
displayed relative to the first packet captured.

	
a

	
Absolute, which specifies that actual times
be displayed for all packets.

	
ad

	
Absolute with date, which specifies that
actual dates and times be displayed for all packets.

	
adoy

	
Absolute with YYYY/DOY date, which specifies that
actual dates and times be displayed for all packets.

	
d

	
Delta, which specifies that timestamps
are relative to the previous packet.

dd: Delta, which specifies that timestamps
are relative to the previous displayed packet.

	
e

	
Epoch, which specifies that timestamps
are seconds since epoch (Jan 1, 1970 00:00:00)

	
u

	
Absolute, which specifies that actual times
be displayed for all packets in UTC.

	
ud

	
Absolute with date, which specifies that
actual dates and times be displayed for all packets in UTC.

	
udoy

	
Absolute with YYYY/DOY date, which specifies that
actual dates and times be displayed for all packets in UTC.

	
-u <s | hms>

	
Show timesamps as seconds (“s”, the default) or hours, minutes, and seconds (“hms”)

	
-v

	
--version

	
This option requests Wireshark to print out its version information and
exit.

	
-w <savefile>

	
This option sets the name of the file to be used to save captured packets.
This can be '-' for stdout.

	
-y <capture link type>

	
--link-type <capture like types>

	
If a capture is started from the command line with -k, set the data
link type to use while capturing packets. The values reported by -L
are the values that can be used.

	
--time-stamp-type <type>

	
If a capture is started from the command line with -k, set the time
stamp type to use while capturing packets. The values reported by
--list-time-stamp-types are the values that can be used.

	
-X <eXtension option>

	
Specify an option to be passed to a Wireshark/TShark module. The eXtension
option is in the form extension_key:value, where extension_key can be:

	
lua_script:<lua_script_filename>

	
Tells Wireshark to load the given script in addition to the default Lua scripts.

	
lua_script[num]:argument

	
Tells Wireshark to pass the given argument to the Lua script identified by
num, which is the number indexed order of the lua_script command. For
example, if only one script was loaded with -X lua_script:my.lua, then -X
lua_script1:foo will pass the string foo to the my.lua script. If two
scripts were loaded, such as -X lua_script:my.lua -X lua_script:other.lua
in that order, then a -X lua_script2:bar would pass the
string bar to the second Lua script, ie., other.lua.

	
read_format:<file_type>

	
Tells Wireshark to use a specific input file type, instead of determining it
automatically.

	
stdin_descr:<description>

	
Define a description for the standard input interface, instead of the default:
"Standard input".

	
-Y <display filter>

	
--display-filter <display filter>

	
Start with the given display filter.

	
-z <statistics-string>

	
Get Wireshark to collect various types of statistics and display the
result in a window that updates in semi-real time. For the currently
implemented statistics consult the Wireshark manual page.

Packet colorization

 A very useful mechanism available in Wireshark is packet colorization.
You can set up Wireshark so that it will colorize packets according to a
display filter. This allows you to emphasize the packets you might be
interested in.

You can find a lot of coloring rule examples at the Wireshark Wiki
Coloring Rules page at https://wiki.wireshark.org/ColoringRules.

There are two types of coloring rules in Wireshark: temporary rules that
are only in effect until you quit the program, and permanent rules that
are saved in a preference file so that they are available the next time
you run Wireshark.

Temporary rules can be added by selecting a packet and pressing the Ctrl
key together with one of the number keys. This will create a coloring rule based
on the currently selected conversation. It will try to create a conversation
filter based on TCP first, then UDP, then IP and at last Ethernet. Temporary
filters can also be created by selecting the Colorize with Filter › Color X
menu items when right-clicking in the packet detail pane.

To permanently colorize packets, select View › Coloring Rules…​. Wireshark
will display the “Coloring Rules” dialog box as shown in
The “Coloring Rules” dialog box.

[image: ws coloring rules dialog]

Figure 119. The “Coloring Rules” dialog box

If this is the first time using the Coloring Rules dialog and you’re using the
default configuration profile you should see the default rules, shown above.

The first match wins

More specific rules should usually be listed before more general rules. For
example, if you have a coloring rule for UDP before the one for DNS, the rule
for DNS may not be applied (DNS is typically carried over UDP and the UDP rule
will match first).

You can create a new rule by clicking on the + button. You can delete
one or more rules by clicking the - button. The “copy” button will
duplicate a rule.

You can edit a rule by double-clicking on its name or filter. In
The “Coloring Rules” dialog box the name of the rule “Checksum Errors” is being
edited. Clicking on the Foreground and Background buttons will
open a color chooser (A color chooser) for the foreground (text) and
background colors respectively.

[image: ws choose color rule]

Figure 120. A color chooser

The color chooser appearance depends on your operating system. The macOS color
picker is shown. Select the color you desire for the selected packets and click
OK.

Using color filters with Wireshark shows an example of several color filters being used
in Wireshark. Note that the frame detail shows that the “Bad TCP” rule
was applied, along with the matching filter.

[image: ws coloring fields]

Figure 121. Using color filters with Wireshark

Control Protocol Dissection

 The user can control how protocols are dissected.

Each protocol has its own dissector, so dissecting a complete packet will
typically involve several dissectors. As Wireshark tries to find the right
dissector for each packet (using static “routes” and heuristics “guessing”),
it might choose the wrong dissector in your specific case. For example,
Wireshark won’t know if you use a common protocol on an uncommon TCP port, e.g.,
using HTTP on TCP port 800 instead of the standard port 80.

There are two ways to control the relations between protocol dissectors: disable
a protocol dissector completely or temporarily divert the way Wireshark calls
the dissectors.

The “Enabled Protocols” dialog box

 The Enabled Protocols dialog box lets you enable or disable specific protocols.
Most protocols are enabled by default. When a protocol is disabled, Wireshark
stops processing a packet whenever that protocol is encountered.

Disabling a protocol will prevent information about higher-layer protocols from
being displayed. For example, suppose you disabled the IP protocol and selected
a packet containing Ethernet, IP, TCP, and HTTP information. The Ethernet
information would be displayed, but the IP, TCP and HTTP information would not -
disabling IP would prevent it and the higher-layer protocols from being displayed.

To enable or disable protocols select Analyze › Enabled Protocols…​.
Wireshark will pop up the “Enabled Protocols” dialog box as shown in
The “Enabled Protocols” dialog box.

[image: ws enabled protocols]

Figure 122. The “Enabled Protocols” dialog box

To disable or enable a protocol, simply click the checkbox using the mouse.
Note that typing a few letters of the protocol name in the search box will limit
the list to those protocols that contain these letters.

You can choose from the following actions:

	
Enable All

	
Enable all protocols in the list.

	
Disable All

	
Disable all protocols in the list.

	
Invert

	
Toggle the state of all protocols in the list.

	
OK

	
Save and apply the changes and close the dialog box, see [AppFiles] for details.

	
Cancel

	
Cancel the changes and close the dialog box.

User Specified Decodes

 The “Decode As” functionality lets you override what protocol is called
under specific circumstances.
This might be useful if Wireshark is incorrectly choosing which dissector
to use for a particular TCP port, for example, or if you do some uncommon
experiments on your network.

Not all protocols support this feature, and not just any protocol field
can be used to override Wireshark’s choice of dissector.

Decode As is accessed by selecting the Analyze › Decode As…​. Wireshark
will pop up the “Decode As” dialog box as shown in The “Decode As” dialog box.

[image: ws decode as]

Figure 123. The “Decode As” dialog box

In this dialog you are able to edit entries by means of the edit buttons on the
left.

You can also pop up this dialog box from the context menu in the
“Packet List” or
“Packet Details” panes.
It will then contain a new line based on the currently selected
packet.

These settings will be lost if you quit Wireshark or change profile unless you
save the entries.

	
+

	
Add new entry for selected packet

	
-

	
Remove the selected entry.

	
Copy

	
Copy the selected entry.

	
Clear

	
Clear the list of user specified decodes.

	
OK

	
Apply the user specified decodes and close the dialog box.

	
Save

	
Save and apply the user specified decodes and close the dialog box.

	
Cancel

	
Cancel the changes and close the dialog box.

Each entry in this dialog will have the following columns.
You can double-click on an entry’s field to change its value,
as long as it’s not an informational (read-only) field.

	Heading
	Description

	Field

	The field whose value should be examined when determining the dissector to use.
Double-click to show a list of all fields which are supported for this feature.

	Value

	The specific value of the chosen field which should indicate
to Wireshark to use your chosen dissector override.

	Type

	Read-only. Shows the type of the chosen field’s value;
for example, integer or string.

	Default

	Read-only. Shows what dissector would normally be called if the chosen field
had the chosen value.

	Current

	The dissector you wish to be called instead.
You will only be able to choose dissectors for protocols which could be
directly carried by the containing protocol. For example, you cannot
specify that data carried over TCP should be passed to the Ethernet dissector.

You can also specify “Decode As” entries on the Wireshark or tshark
command line. See the documentation of the -d option in
Start Wireshark from the command line.

Preferences

 There are a large number of preferences you can set. Simply select the Edit › Preferences…​ (Wireshark › Preferences…​ on macOS) and Wireshark will pop up the Preferences dialog box as shown in The preferences dialog box, with the “Appearance” page as default.
On the left side is a tree where you can select the page to be shown.

	
The OK button will apply the preferences settings and close the dialog.

	
The Cancel button will restore all preferences settings to the last saved state.

You can also see a protocol’s preferences from the pop-up menus for the
“Packet List” or
“Packet Details” panes,
by going to the Protocol Preferences menu item, which will pop open a sub-menu.

The top entry in this new menu will take you to the Preferences dialog box
as shown in The preferences dialog box, with the chosen protocol’s page showing.

The final entry in this menu will completely disable the dissection of
the chosen protocol. See The “Enabled Protocols” dialog box for how to re-enable the protocol.

Any other entries in this menu will let you quickly adjust individual
preferences for this protocol without needing to open the full Preferences dialog box.

Appearance

 These preferences give you the option to control the makeup of the GUI.

[image: ws pref appearance]

Figure 124. The preferences dialog box

Selecting Remember main window size and placement allow for a repeatable experience when restarting Wireshark.

Selecting Open files in allows you to determine where to start the file selection dialog when opening capture files.

The preference Show up to allows you to determine how much history is tracked for display filter entries and recent files shown in the main application window.

Selecting Confirm unsaved capture files causes a dialog to appear when closing a capture file when it was not yet saved.
This may help preventing inadvertent loss of data, eg., when Wireshark is closed.

Selecting Display autocompletion for filter text causes a drop down list to appear when you enter a display filter.
This drop down list contains known display filters for easy selection.

The preference Main toolbar style allows you to tailor the toolbar style in one of three ways.

The Wireshark main window title is replaced by the name of the opened capture file.
The preferences Window title and Prepend window title allow you to add bracketed strings after and before the window title.
These window title strings can contain variables which will be replaced by their respective values.

The following variables are available.

	
%C = Capture comment from command line

	
%F = File path of the capture file

	
%P = Currently selected profile name

	
%S = Conditional separator (dash) that only shows when surrounded by variables with values or static text

	
%V = Wireshark version info

The Language preference allows you to select the language used in the GUI.
Note that the protocol information and details are kept in the language commonly used in this field, that being English.

Columns

 These preferences give you the option to control the definition of the columns shown in the packet list, once a capture file is loaded.

[image: ws pref appearance columns]

Figure 125. Column preferences

	
+

	
Add new entry to the list.

	
-

	
Remove the selected entry.

Selecting Show displayed columns only hides all non-displayed columns from the list, possibly making navigating the list easier.

The rows can be dragged and dropped to arrange them in the desired order.

The columns in the entries are as follows.

Selecting Displayed causes the column to be shown in the packet list.

The Title is the text shown in the header of the column in the packet list.

The Type is the type of value to be shown. This can be a predefined type, ie. a value in a defined format, or custom.

The following settings are applicable when the Type is set to "custom"

The Fields setting is the display filter name of the field to be shown in the column in the packet list.

The Field Occurrence setting is the count of the given field in the frame, for fields that appear more than once in a frame.

Selecting Resolved causes name resolution to be applied to the field value, when available.

The Width is the width of the column.

The Alignment is the alignment of the text in the column.

Font and Colors

 These preferences give you the option to select the font and colors used in the various packet panes.
Most usable is to select a mono spaced font, which allows for a cleaner presentation, but using a proportional font is possible too.

[image: ws pref appearance fonts and colors]

Figure 126. Font and colors preferences

Layout

 These preferences allow you to define the layout of the GUI once a capture file is loaded.

[image: ws pref appearance layout]

Figure 127. Layout preferences

Make sure that you have at least one pane configured to contain the Packet list.
Three panes can be active at the same time and they can be laid out as shown in the top layer.
The exact sizes of these panes can be changed as needed once a capture file is opened.

Selecting Show packet list separator causes the packet list entries to be slightly set apart, which may improve readability at the cost of the amount of packets shown in the packet list.

Selecting Show column definition in column context menu make the column context menu wider to show the currently configured field type for the column.
This may help identify the column to select or modify.

Selecting Allow the list to be sorted enables the sort operator on all the columns.
This may prevent inadvertently triggering a sort, which may take considerable time for larger capture files.

The Maximum number of cached rows setting determines how much packet list information is cached to speed up sort operations, where a larger number causes more memory to be consumed by the cache.
Be aware that changing other dissection settings may invalidate the cache content.

Selecting Enable mouse-over colorization enables the highlighting of the currently pointed to packet in the packet list.
The currently selected packet is always highlighted.

Selecting Show selected packet number adds the selected packet number to the capture file details in the status bar, taking up some space in the status bar.

Selecting Show file load time adds the time it took to load the capture file to the status bar, taking up some space in the status bar.

The button Restore Defaults allows you to get back to a working basic configuration.

Capture

 These preferences allow you to set the default conditions for packet capture.

[image: ws pref capture]

Figure 128. Capture preferences

The default interface is the interface used for packet capture in case no other is selected on the opening page of GUI.
Note that this can be multiple interfaces separated by a comma.

Selecting Capture packets in promiscuous mode causes the network interface(s) to capture on to be configured in promiscuous mode.
This allows all (Ethernet) frames to be received by the network interface to be capture, not only those that are addressed to the capture interface.

Selecting Capture packets in monitor mode on 802.11 devices causes the WiFi interface(s) to capture on to be configured in monitor mode.
This allows all WiFi frames to be received by the WiFi interface to be captured, not only those that are addressed to the capture interface.
Results may vary, depending on the actual capabilities of the operating system, the WiFi driver software and WiFi interface itself.

Selecting Capture packets in pcapng format causes the Next-Generation packet capture file format to be used when capturing.
This much more capable packet capture file format has many advantages over the original format, although not every external tool may be capable of handling packet captures in this format.

Selecting Update list of packets in real time causes the packet list to fill up and possibly scroll up during the packet capture process.
This does give an insight in the packets captured, although it takes processing power to dissect the capture packets.

The preference Interval between updates (ms) allows you to configure how often the packet list is updated during the packet capture process.
A higher interval reduces processing, but causes more delay between capture and display in the packet list.

Selecting Don’t load interfaces on startup prevents Wireshark from spawning dumpcap to populate the list of capture interfaces on the local system.
This might be a time consuming operation delaying the start of the program, however on most systems this is not an issue.
The interface list can always be populated after Wireshark is started via Capture › Refresh Interfaces.

Selecting Disable external capture interfaces prevents Wireshark from spawning extcap programs to list off their capture interfaces.
This might be a time consuming operation delaying the start of the program, however on most systems this is not an issue.

Expert Items

 These preferences allow you to modify the severity set for expert items.

[image: ws pref expert]

Figure 129. Expert item preferences

If, for whatever reason, you find that the severity for certain expert items does not match your needs you can change them here and have them used as such, showing up in the appropriate lists and overviews.
Get the Field name from selecting the field in the packet details pane, then observe the name shown in the status bar.
This is the name you enter on a new line in the list, while setting the desired Severity in the next column.

	
+

	
Add new entry to the list.

	
-

	
Remove the selected entry.

	
Copy

	
Copy the selected entry.

	
⌃

	
Move the selected entry up in the list.

	
⌄

	
Move the selected entry down in the list.

	
Clear

	
Clear the list of user specified expert item severities.

	
Copy from

	
Copy the list of user specified expert item severities from another profile.

Filter Buttons

 Having quick access to regularly used display filter expressions can be a real productivity boost.
Here you can define your own display filter buttons.

[image: ws pref filter buttons]

Figure 130. Filter buttons

	
+

	
Add new entry to the list.

	
-

	
Remove the selected entry.

	
Copy

	
Copy the selected entry.

	
⌃

	
Move the selected entry up in the list.

	
⌄

	
Move the selected entry down in the list.

	
Clear

	
Clear the list of user specified display filter buttons.

	
Copy from

	
Copy the list of user specified display filter buttons from another profile.

The columns in the entries are as follows.

Selecting Show in toolbar causes the button to be shown in the toolbar besides the display filter text entry.

The Button Label is the text shown on the button in the toolbar.
The use of a double slash causes the button to create a dropdown list to allow grouping of multiple buttons, e.g. TCP//Syn and TCP//Res.

The Filter Expression is the display filter expression entered into the display filter text entry when the button is clicked.

The Comment is the comment text which appears in a bubble when the mouse hovers over the button.

Name Resolution

 These preferences allow you to configure which numeric identifiers in protocols are translated into human readable text.
For some of these identifiers the readable texts are read from configurable external sources.

[image: ws pref name resolution]

Figure 131. Name resolution preferences

Selecting Resolve MAC addresses causes the OUI (Organizationally Unique Identifier) at the start of an Ethernet address to be translated into the name registered with the IEEE for that OUI.

Selecting Resolve transport names causes the UDP and TCP port numbers to be translated into the service registered to these ports by IANA.

Selecting Resolve network (IP) addresses causes IPv4, IPv6 and IPX addresses to be translated into their corresponding host name.
To do this Wireshark reaches out to DNS servers to request names for addresses it finds in packets.
There are several way to do this, which can be controlled through the following preferences.

Selecting Use captured DNS packet data for name resolution causes DNS response packets in the capture file to fill the network address resolution table.
These can then be used to resolve addresses found in the packets.

Selecting Use SNI information from captured handshake packets causes TLS client hello packets with a Server Name Indication extension to fill the network address resolution table.

Selecting Use your system’s DNS settings for name resolution causes DNS requests to be made as would be for other network applications.

Selecting Use a custom list of DNS servers for name resolution causes DNS requests to be made to manually configured DNS servers.

The DNS Servers Edit…​ button provides access to the dialog to manage these manually configured DNS servers.

The Maximum concurrent requests input field allows you to limit the amount of DNS queries made at the same time.

Selecting Resolve VLAN IDs causes the file "vlans" to be read and used to name VLANs.
This file has the simple format of one line per VLAN, starting wit VLAN ID, a tab character, followed by the name of the VLAN.

Selecting Resolve SS7 PCs causes the file "ss7pcs" to be read and used to name SS7 Point Codes.
This file has the simple format of one line per Point Code, starting with Network Indicator, a dash, the Point Code in decimal, a tab character, followed by the name of the Point Code.

Selecting Enable OID resolution causes the SMI library to be initialized.
This library is capable of loading MIB/PIB files to provide name resolution for SMI objects, as present in SNMP packets.

Selecting Suppress SMI errors prevents the SMI library from emitting error messages while loading MIB/PIB files.
The SMI library is very sensitive to irregularities in these files often resulting in harmless error being emitted.

The SMI (MIB and PIB) paths Edit…​ button provides access to the dialog to manage the directories where the MIB/PIB files to be loaded can be found.

The SMI (MIB and PIB) modules Edit…​ button provides access to the dialog to manage the MIB/PIB modules to be loaded.

Selecting Enable IP geolocation causes the background MaxMind database IP geolocation resolver to be used to attempt to geolocate IP addresses in the packets.

The MaxMind database directories Edit…​ button provides access to the dialog to manage the directories where the MaxMind database files can be found. See MaxMind Database Paths.

Protocols

 Wireshark supports quite a few protocols, which is reflected in the long list of child entries of the “Protocols” pane.
You can jump to the preferences for a specific protocol by expanding “Protocols” and typing the first few letters of the protocol name.

[image: ws pref protocols]

Figure 132. Protocol preferences

There are a few general protocol related preferences, listed below.

Selecting Display hidden protocol items influences what is shown in the packet details pane of the packet selected from the packet list.
Some protocol dissectors add hidden protocol items that provide additional interpretations of the packet data, or with different display filter strings.
These may or may not provide valuable information to the user and may clutter the output, therefor these items can be hidden.

Selecting Display byte fields with a space character between bytes influences the way a byte field in shown in the packet details pane of the packet selected in the packet list, if the dissector creates a byte field that is.
The bytes in the byte field are normally shown as a concatenated sequence of hexadecimals.
This preference allows you to get the representation of each byte separated by a space.
This may improve readability of the individual bytes in the byte field.

The preference Format absolute times like asctime allows you to define how absolute times are formatted, in the columns and in the protocol tree.
Either in the old format used in previous Wireshark versions, or using the more unambiguous method defined in ISO 8601.

Selecting Look for incomplete dissectors causes expert items to be added to the dissection of packet data for which the dissector does not create an interpretation.
Dissectors should strive to not skip packet bytes and this preference allows you to be made aware of this.

Selecting Enable stricter conversation tracking heuristics allows dissectors to take more identifiers into consideration when creating "conversations".
These are used to track related packets.
The heuristics for these conversations are sensitive to mis-identification of packets, possibly corrupting conversation analysis.
Adding more identifiers can reduce the change of this happening.
Currently only the IPv4, ICMP and ICMPv6 dissector use this preference.

Selecting Ignore duplicate frames causes a duplicate frame to appear in the packet list, but flagged as ignored, hence not dissected.
The determination of a duplicate frame is made based on the SHA256 hash of the bytes in the frame.

The preference Deinterlacing conversations key gives you options for deinterlacing the conversations, for the Ethernet encapsulation only.
As opposed to hardware duplicates which show absolutely similar frames, capture duplicates are the consequence of the capture method
(capture on multiple interfaces for example) and show similar payloads with one or more different fields.
While NONE keeps the historical behaviour, the other options are built on three keys with the following meanings:
 V (VLAN), M (MAC Address), I (Interface).
The presence of packets which seem to be duplicates because they have the same payload but aren’t filtered by the other preference Ignore duplicate frames,
is a strong indication that a deinterlacing key is likely to change the interpretation.
Check carefully the different values of Interface IDs, MAC Addresses, and VLAN Tags, to identify which deinterlacing key is appropriate for
isolating the conversations and bringing the proper interpretation, but keep in mind that capturing on different interfaces or VLANs doesn’t necessarily
mean that deinterlacing is needed.

When the deinterlacing key has any impact on the dissection, either the IPv4/IPv6 tabs of the Conversations dialog or the tuple values related to Ethernet
or IPv4/IPv6 in the Conversation Hash Tables dialog will make this obvious (protocols supporting multiple incarnations of a connection such as TCP are
harder to interpret and then rather not checked first).

The preference The max number of hashes to keep in memory for determining duplicate frames allows you to set how large the set of frames to consider for duplication is.

RSA Keys

 For more information see https://wiki.wireshark.org/TLS.

[image: ws pref rsa keys]

Figure 133. RSA keys

Statistics

 These preference have influence on the Statistics Tree (stats_tree) based dialogs accessible via the Statistics menu.

[image: ws pref statistics]

Figure 134. Statistics preferences

The preference Tap update interval in ms allows you to set how quickly protocol taps are being updated, partially determining the update speed of various dialogs and graphs.

The preference Maximum Flow Graph items to export as image allows you to set how dense or expansive the exported graph may become.

Selecting Enable the calculation of burst information allows the Statistics Tree system to calculate burst information.

Selecting Show burst count for item rather than rate allows the statistics nodes to show the count of events within the burst window instead of a burst rate.
Burst rate is calculated as number of events within burst window divided by the burst window length.

The preference Burst rate resolution (ms) sets the duration of the time interval into which events are grouped when calculating the burst rate.
Setting a higher resolution (ie., a smaller number) increases processing overhead.

The preference Burst rate window size (ms) sets the duration of the sliding window during which the burst rate is measured.
Longer window relative to burst rate resolution increases processing overhead.
This value will be truncated to a multiple of the Burst rate resolution preference setting.

The preference Default sort column for stats_tree stats gives you to option to select one of the columns to sort on.

Selecting Default stats_tree sort order is descending causes a descending sort order based on the previously selected column.

Selecting Case sensitive sort of stats_tree item names causes a case sensitive sort based on the previous selected order and column.

Selecting Always sort 'range' nodes by name causes the sort to take place by name rather than values.

Selecting Always sort 'range' nodes in ascending order makes an exception for range nodes to the previously selected sort order.

Selecting Display the full stats_tree plug-in name causes the full menu path of the Statistics Tree plugin to be shown in the title.

The preference Default output format allows you to select how you want the statistics to be saved by default, either as plain text or some structured format.

Advanced

 The “Advanced” pane will let you view and edit all of Wireshark’s preferences, similar to about:config and chrome:flags in the Firefox and Chrome web browsers.

[image: ws pref advanced]

Figure 135. Advanced preferences

You can search for a preference by typing text into the “Search” entry. The search text will be matched against the internal name of the preference, but also associated help texts in order to improve discoverability.

Selecting Show changed values restricts the list to settings having non-default values. This may help finding what has changed more easily.

You can also pass preference names to Wireshark and TShark on the command line.
For example, the gui.prepend_window_title can be used to differentiate between different instances of Wireshark on your screen:

 $ wireshark -o "gui.prepend_window_title:LAN" &
$ wireshark -o "gui.prepend_window_title:External Network" &

For more information, including how to specify a User Accessible Table
entry on the command line, see the documentation for -o in Start Wireshark from the command line.

Configuration Profiles

 Configuration Profiles can be used to configure and use more than one set of
preferences and configurations. Select the Edit › Configuration Profiles…​ menu item
or press Shift+Ctrl+A or Shift+Cmd+A (macOS) and Wireshark will pop up
the Configuration Profiles dialog box as shown in
The configuration profiles dialog box. It is also possible to click in the “Profile”
part of the statusbar to popup a menu with available Configuration Profiles
(The Statusbar with a configuration profile menu).

Configuration files stored in each profile include:

	
Preferences (preferences) (Preferences)

	
Capture Filters (cfilters) (Defining And Saving Filters)

	
Display Filters (dfilters) (Defining And Saving Filters)

	
Display Filter Macros (dmacros) (Defining And Saving Filter Macros)

	
Coloring Rules (colorfilters) (Packet colorization)

	
Disabled Protocols (disabled_protos) (The “Enabled Protocols” dialog box)

	
Most User Accessible Tables (User Accessible Tables)

	
Changed dissector assignments (decode_as_entries), which can be set in the “Decode
As…​” dialog box (User Specified Decodes).

	
Some recent settings (recent), such as pane sizes in the Main window
(The Main window), column widths in the packet list
(The “Packet List” Pane), all selections in the View menu
(The “View” Menu) and the last directory navigated to in the “File
Open” dialog.

All other configurations are stored in the personal configuration folder and
are common to all profiles.

[image: ws gui config profiles]

Figure 136. The configuration profiles dialog box

	
Search for profile …​

	
The list of profiles can be filtered by entering part of the profile’s name
into the search box.

	
Type selection

	
Profiles can be filtered between displaying "All profiles", "Personal profiles"
and "Global profiles"

	
Personal profiles - these are profiles stored in the user’s configuration directory

	
Global profiles - these are profiles provided with Wireshark

	
New (+)

	
Create a new profile. The name of the created profile is “New profile”
and is highlighted so that you can more easily change it.

	
Delete (-)

	
Deletes the selected profile. This includes all configuration files used
in this profile. Multiple profiles can be selected and deleted at the same time.
It is not possible to delete the “Default” profile or global profiles.
Deletion of the "Default" profile will reset this profile.

	
Copy

	
Copies the selected profile. This copies the configuration of the
profile currently selected in the list. The name of the created profile
is the same as the copied profile, with the text “(copy)” and is
highlighted so that you can more easily change it.

	
Auto switch packet limit

	
The number of packets to check for automatic profile switching, described below.
Setting this to zero disables automatic profile switching.

	
Import

	
Profiles can be imported from zip-archives as well as directly from directory
structures. Profiles, which already exist by name will be skipped, as well as
profiles named "Default".

	
Export

	
Profiles can be exported to a zip-archive. Global profiles, as well as the default
profile will be skipped during export. Profiles can be selected in the list individually
and only the selected profiles will be exported

	
OK

	
This button saves all changes, applies the selected profile and closes the
dialog.

	
Cancel

	
Close this dialog. This will discard unsaved settings, new profiles will not be
added and deleted profiles will not be deleted.

	
Help

	
Show this help page.

Automatic Profile Switching

 You can configure Wireshark to automatically change configuration profiles by adding a display filter to the "Auto Switch Filter" setting for a profile.
When you open a capture file, Wireshark will check each filter against a limited number of packets and will switch to the first profile with a matching filter.
The number of packets is determined by the "Auto switch packet limit" setting, and a limit of 0 will disable this feature.
Manually changing your profile will disable this behavior until you open a different capture file.

User Accessible Tables

 User Accessible Tables (UATs) are a type of preference table which may be
associated with particular protocols or
with the application as a whole.

User Accessible Tables have a common editor dialog which works as described
in Expert Items and Filter Buttons. Note that
the name of the file appears in the lower right corner of the dialog.

The files are saved in a CSV format, where values are either double quoted
ASCII strings (using C-style backslash escapes for non-printable characters)
or unquoted hexstrings, depending on the field type. They can be edited directly
when Wireshark is not running, though this is discouraged. Entries can
also be appended to the table by passing an appropriate CSV formatted
record string on the command line.

Most UATs are stored in the
configuration profile:

	
Custom HTTP headers (custom_http_header_fields)

	
Custom IMF headers (imf_header_fields)

	
Custom LDAP AttributeValue types (custom_ldap_attribute_types)

	
Display Filter Buttons (dfilter_buttons)

	
Display Filter Macros (dfilter_macros), prior to Wireshark 4.4

	
DNS Servers (addr_resolve_dns_servers)

	
ESS Category Attributes (ess_category_attributes)

	
Expert Item Severity (expert_severity)

	
IEEE 802.11 WLAN Decryption Keys (80211_keys)

	
IKEv2 decryption table (ikev2_decryption_table)

	
I/O Graphs (io_graphs)

	
Plots (plots)

	
K12 Protocols (k12_protos)

	
Object Identifier Names and Associated Syntaxes ()

	
Packet Lengths (packet_lengths)

	
PRES Users Context List (pres_context_list)

	
SCCP Users Table (sccp_users)

	
SNMP Enterprise Specific Trap Types (snmp_specific_traps)

	
SNMP Users (snmp_users)

	
User DLTs Table (user_dlts)

	
Protobuf Search Paths (protobuf_search_paths)

	
Protobuf UDP Message Types (protobuf_udp_message_types)

Other UATs are stored in the personal configuration directory and are
common to all profiles:

	
MaxMind Database Paths (maxmind_db_paths)

	
RSA Private Keys (rsa_keys) and PKCS #11 Provider Libraries (pkcs11_libs)

	
SMI Modules (smi_modules) and SMI Paths (smi_paths)

ESS Category Attributes

 Wireshark uses this table to map ESS Security Category attributes to textual representations. The values to put in this table are usually found in an XML SPIF, which is used for defining security labels.

This table is a user table, as described in User Accessible Tables, with the
following fields:

	
Tag Set

	
An Object Identifier representing the Category Tag Set.

	
Value

	
The value (Label And Cert Value) representing the Category.

	
Name

	
The textual representation for the value.

MaxMind Database Paths

 If your copy of Wireshark supports MaxMind’s MaxMindDB library, you can use their databases to match IP addresses to countries, cites, autonomous system numbers, and other bits of information.
Some databases are available at no cost for registered users, while others require a licensing fee.
See the MaxMind web site for more information.

The configuration for the MaxMind database is a user table, as described
in User Accessible Tables, with the following fields:

	
Database pathname

	
This specifies a directory containing MaxMind data files. Any files
ending with .mmdb will be automatically loaded.

By default Wireshark will always search for data files in
/usr/share/GeoIP and /var/lib/GeoIP on non-Windows platforms
and in C:\ProgramData\GeoIP and C:\GeoIP on Windows. You can
put any additional search paths here, e.g. C:\Program Files\Wireshark\GeoIP
might be a good choice on Windows.

While the default search paths are not listed in the user table, they
are in the list viewable by opening Help › About Wireshark and
selecting the "Folders" tab.

Previous versions of Wireshark supported MaxMind’s original GeoIP Legacy
database format. They were configured similar to MaxMindDB files above,
except GeoIP files must begin with Geo and end with .dat. They are
no longer supported and MaxMind stopped distributing GeoLite Legacy
databases in April 2018.

IEEE 802.11 WLAN Decryption Keys

 Wireshark can decrypt WEP and WPA/WPA2/WPA3 in pre-shared (or personal) mode,
as well as in enterprise mode. Security improvements in more recent 802.11
releases require distinct session keys, instead of being able to decipher
all traffic to a given access point with a single known password and SSID.

You can add decryption keys using Wireshark’s IEEE 802.11 preferences.
Up to 64 keys are supported.

Adding Keys

 Go to Edit › Preferences › Protocols › IEEE 802.11, or, from the pop-up menu
in the "Packet List" or "Packet Details" pane from a frame that contains IEEE
802.11, Protocol Preferences › IEEE 802.11 wireless LAN.
You should see a window that looks like this:

[image: ws wireless ieee 80211 pref]

Figure 137. "IEEE 802.11 wireless LAN" preferences

Click on the "Edit…​" button next to "Decryption Keys" to add keys.
You should see a window that looks like this:

[image: ws wireless key type]

Figure 138. 802.11 Decryption Key Types

When you click the + button to add a new key, there are five key types you
can choose from: wep, wpa-pwd, wpa-psk, tk, or msk.
The correct key type(s) depend on the Cipher Suite and Authentication and
Key Management Suite (AKMS) used to encrypt the wireless traffic.

	
wep

	
The key must be provided as a string of hexadecimal numbers, with or
without colons, and will be parsed as a WEP key. WEP keys can be 40-bit
(5 bytes, or 10 hexadecimal characters), 104-bit, or occasionally 128-bit:

a1:b2:c3:d4:e5

0102030405060708090a0b0c0d

	
wpa-pwd

	
The password and SSID are used to create a raw pre-shared WPA key.
The password can be between 8 and 63 characters, and the SSID can be up to
32 bytes. (Typically both are printable ASCII, but that is not a hard
limitation of the specification, only a recommendation.)

MyPassword:MySSID

You can optionally omit the colon and SSID, and Wireshark will try to decrypt
packets using the last-seen SSID. This may not work for captures taken in busy
environments, since the last-seen SSID may not be correct.

MyPassword

The WPA passphrase and SSID let you encode non-printable or otherwise troublesome
characters using URI-style percent escapes, e.g., %20 for a space. As a result
you have to escape the percent characters themselves using %25. You also must
escape colons in the passphrase or SSID themselves as %3a, in order to
distinguish them from a colon as a separator between the passphrase and SSID.

The WPA pass-phrase and SSID method is for WPA/WPA2-Personal only. It will
not work for WPA3-Personal, which uses SAE (Simultaneous Authentication of
Equals), nor for the Enterprise / 802.1X / EAP modes.

	
wpa-psk

	
The key must be provided as a hexadecimal string, and is parsed as a
PSK (Pre-Shared Key) or PMK (Pairwise Master Key). For WPA/WPA2-Personal,
the PSK and the PMK are identical, and directly derived from the passphrase
and SSID above. The keys can be 256 bits (32 bytes, 64 hex characters) or
384 bits (48 bytes, 96 hex characters).

0102030405060708091011...6061626364

	
tk

	
The key must be provided as a hexadecimal string, and is parsed as a
PTK (Pairwise Transient Key) or GTK (Group Temporal Key). The keys can
be 16 or 32 bytes (128 or 256 bits), depending on the cipher suite used.
(5 and 13 byte WEP TKs are not yet supported.)

	
msk

	
The key must be provided as a hexadecimal string, and is parsed as
a MSK (Master Session Key). This is used for FT-EAP (IEEE 802.11r
Fast BSS Transition with EAP authentication). The key can be 64 or 128
bytes.

[image: ws wireless key examples]

Figure 139. 802.11 Decryption Key Examples

Gotchas

 Along with decryption keys there are other preference settings that affect decryption.

	
Make sure Enable decryption is selected.

	
You may have to toggle Assume Packets Have FCS and Ignore the Protection bit depending on how your 802.11 driver delivers frames.

Capturing the 4-way Handshake

 WPA and WPA2 use keys derived from an EAPOL handshake, which occurs when a machine joins a Wi-Fi network, to encrypt traffic. Unless all four handshake packets are present for the session you’re trying to decrypt, Wireshark won’t be able to decrypt the traffic. You can use the display filter eapol to locate EAPOL packets in your capture.

In order to capture the handshake for a machine, you will need to force the machine to (re-)join the network while the capture is in progress. One way to do this is to put the machine to sleep (for smartphones and tablets, "turning off" the machine puts it to sleep) before you start the capture, start the capture, and then wake the machine up. You will need to do this for all machines whose traffic you want to see.

If a TK is provided as a key, then the EAPOL 4-way handshake is not necessary,
as the TK is what the handshake derives. However, all available TKs will be
tried agi

Too Many Associations

 WPA and WPA2 use individual keys for each device. Wireshark is able to handle
up to 256 active associations, which should be enough in most circumstances.
Nevertheless, if a capture has too many devices and too many associations, then
while the packet list may show all packets decoded on the first pass, randomly
accessing different packets in the packet details will result in some packets
failing to be properly deciphered.

Filtering out only the relevant packets (e.g. with "wlan.addr") and saving into
a new file should get decryption working in all cases, though it may require
editing keys in the preferences or restarting Wireshark in order to free used
associations. For the same reason, it is possible to be able to decode packets
in a capture file without any EAPOL packets in it, as long as Wireshark did see
the handshake for this communication in another capture without being
restarted or editing keys. This can sometimes lead to exporting selected
packets to a new file, opening that file and decoding seeming to work, but
then decoding suddenly fail on the new file after Wireshark is restarted or keys
are edited. If decoding suddenly stops working on a capture make sure the needed
EAPOL packets are still in it.

WPA/WPA2 Enterprise/Rekeys

 As long as you can somehow extract the PMK from either the client or the Radius
Server and configure the key (as PSK) all supported Wireshark versions will decode
the traffic just fine up to the first EAPOL rekey.

EAPoL rekey is often enabled for WPA/WPA2 enterprise and will change the used
encryption key similar to the procedure for the initial connect, but it can also
be configured and used for pre-shared (personal) mode.

Decrypting IEEE 802.11r Fast BSS Transition roaming requires capturing
reassociation frames for similar reasons, and is supported by recent
Wireshark versions.

WPA3 Per-Connection Decryption

 In WPA3, a different PMK is used for each connection in order to achieve forward
secrecy. Capturing the 4-way handshake and knowing the network password is not
enough to decrypt packets; you must obtain the PMK from either the client or
access point (typically by enabling logging in wpa_supplicant or hostapd
with the -d -K flags) and use this as the decryption key in Wireshark. Even
then, the decryption will only work for packets between that client and access
point, not for all devices on that network.

TKs and Performance

 The TKs are the actual transient keys used to encrypt packets, which are derived
during the handshake. If known, they can decrypt packets without having the
handshake packets in a capture. However, having TKs as encryption keys in the
table will affect IEEE 802.11 dissector performance as each encrypted
packet will be tested against every TK until decryption is successful.
If the table is configured with many TKs, none of which match any
encrypted frame in the capture, performance can be slow.

Once a match is found, an association is formed similar to in the usual
method and decryption of other frames with the same key should be on
par with normal decryption flow. Thus, if most frames in the capture
match TKs (or other keys), and only a limited number of TKs are configured,
the performance impact is slight.

IKEv2 decryption table

 Wireshark can decrypt Encrypted Payloads of IKEv2 (Internet Key Exchange version
2) packets if necessary information is provided. Note that you can decrypt only
IKEv2 packets with this feature. If you want to decrypt IKEv1 packets or ESP
packets, use Log Filename setting under ISAKMP protocol preference or settings
under ESP protocol preference respectively.

This is handled by a user table, as described in User Accessible Tables,
with the following fields:

	
Initiator’s SPI

	
Initiator’s SPI of the IKE_SA. This field takes hexadecimal string without
“0x” prefix and the length must be 16 hex chars (represents 8 octets).

	
Responder’s SPI

	
Responder’s SPI of the IKE_SA. This field takes hexadecimal string without
“0x” prefix and the length must be 16 hex chars (represents 8 octets).

	
SK_ei

	
Key used to encrypt/decrypt IKEv2 packets from initiator to responder. This
field takes hexadecimal string without “0x” prefix and its length must meet
the requirement of the encryption algorithm selected.

	
SK_er

	
Key used to encrypt/decrypt IKEv2 packets from responder to initiator. This
field takes hexadecimal string without “0x” prefix and its length must meet
the requirement of the encryption algorithm selected.

	
Encryption Algorithm

	
Encryption algorithm of the IKE_SA.

	
SK_ai

	
Key used to calculate Integrity Checksum Data for IKEv2 packets from responder
to initiator. This field takes hexadecimal string without “0x” prefix and its
length must meet the requirement of the integrity algorithm selected.

	
SK_ar

	
Key used to calculate Integrity Checksum Data for IKEv2 packets from initiator
to responder. This field takes hexadecimal string without “0x” prefix and its
length must meet the requirement of the integrity algorithm selected.

	
Integrity Algorithm

	
Integrity algorithm of the IKE_SA.

Object Identifiers

 Many protocols that use ASN.1 use Object Identifiers (OIDs) to uniquely identify
certain pieces of information. In many cases, they are used in an extension
mechanism so that new object identifiers (and associated values) may be defined
without needing to change the base standard.

While Wireshark has knowledge about many of the OIDs and the syntax of their
associated values, the extensibility means that other values may be encountered.

Wireshark uses this table to allow the user to define the name and syntax of
Object Identifiers that Wireshark does not know about (for example, a privately
defined X.400 extension). It also allows the user to override the name and
syntax of Object Identifiers that Wireshark does know about (e.g., changing the
name “id-at-countryName” to just “c”).

This table is a user table, as described in User Accessible Tables, with the
following fields:

	
OID

	
The string representation of the Object Identifier e.g., “2.5.4.6”.

	
Name

	
The name that should be displayed by Wireshark when the Object Identifier is
dissected e.g., (“c”);

	
Syntax

	
The syntax of the value associated with the Object Identifier. This must be one
of the syntaxes that Wireshark already knows about (e.g., “PrintableString”).

PRES Users Context List

 Wireshark uses this table to map a presentation context identifier to a given
object identifier when the capture does not contain a PRES package with a
presentation context definition list for the conversation.

This table is a user table, as described in User Accessible Tables, with the
following fields:

	
Context Id

	
An Integer representing the presentation context identifier for which this
association is valid.

	
Syntax Name OID

	
The object identifier representing the abstract syntax name, which defines the
protocol that is carried over this association.

SCCP users Table

 Wireshark uses this table to map specific protocols to a certain DPC/SSN
combination for SCCP.

This table is a user table, as described in User Accessible Tables, with the
following fields:

	
Network Indicator

	
An Integer representing the network indicator for which this association is
valid.

	
Called DPCs

	
A range of integers representing the dpcs for which this association is valid.

	
Called SSNs

	
A range of integers representing the ssns for which this association is valid.

	
User protocol

	
The protocol that is carried over this association

SMI (MIB and PIB) Modules

 If your copy of Wireshark supports libSMI, you can specify a list of MIB and PIB
modules here. The COPS and SNMP dissectors can use them to resolve OIDs.

	
Module name

	
The name of the module, e.g., IF-MIB.

SMI (MIB and PIB) Paths

 If your copy of Wireshark supports libSMI, you can specify one or more paths to
MIB and PIB modules here.

	
Directory name

	
A module directory, e.g., /usr/local/snmp/mibs. Wireshark automatically uses
the standard SMI path for your system, so you usually don’t have to add anything
here.

SNMP Enterprise Specific Trap Types

 Wireshark uses this table to map specific-trap values to user defined
descriptions in a Trap PDU. The description is shown in the packet details
specific-trap element.

This table is a user table, as described in User Accessible Tables, with the
following fields:

	
Enterprise OID

	
The object identifier representing the object generating the trap.

	
Trap Id

	
An Integer representing the specific-trap code.

	
Description

	
The description to show in the packet details.

SNMP users Table

 Wireshark uses this table to verify authentication and to decrypt encrypted
SNMPv3 packets.

This table is a user table, as described in User Accessible Tables, with the
following fields:

	
Engine ID

	
If given this entry will be used only for packets whose engine id is this. This
field takes a hexadecimal string in the form 0102030405.

	
Username

	
This is the userName. When a single user has more than one password for
different SNMP-engines the first entry to match both is taken, if you need a
catch all engine-id (empty) that entry should be the last one.

	
Authentication model

	
Which auth model to use (either “MD5”, “SHA1”, "SHA2-224", "SHA2-256", "SHA2-384" or "SHA2-512").

	
Password

	
The authentication password. Use \xDD for unprintable characters. A
hexadecimal password must be entered as a sequence of \xDD characters. For
example, the hex password 010203040506 must be entered as
\x01\x02\x03\x04\x05\x06. The \ character must be treated as an unprintable
character, i.e., it must be entered as \x5C or \x5c.

	
Privacy protocol

	
Which encryption algorithm to use (either “DES”, “AES”, "AES192" or "AES256").

	
Privacy password

	
The privacy password. Use \xDD for unprintable characters. A hexadecimal
password must be entered as a sequence of \xDD characters. For example, the hex
password 010203040506 must be entered as \x01\x02\x03\x04\x05\x06. The \
character must be treated as an unprintable character, i.e., it must be entered
as \x5C or \x5c.

	
Key expansion method

	
Which method to use to expand the key when the generated key provides too few bytes
for the selected encryption method (either based on "draft-reeder-snmpv3-usm-3desede-00" or
as implemented in AGENT++).

Tektronix K12xx/15 RF5 protocols Table

 The Tektronix K12xx/15 rf5 file format uses helper files (*.stk) to identify the
various protocols that are used by a certain interface. Wireshark doesn’t read
these stk files, it uses a table that helps it identify which lowest layer
protocol to use.

Stk file to protocol matching is handled by a user table, as described
in User Accessible Tables, with the following fields:

	
Match string

	
A partial match for an stk filename, the first match wins, so if you have a
specific case and a general one the specific one must appear first in the list.

	
Protocol

	
This is the name of the encapsulating protocol (the lowest layer in the packet
data) it can be either just the name of the protocol (e.g., mtp2, eth_withoutfcs,
sscf-nni) or the name of the encapsulation protocol and the “application”
protocol over it separated by a colon (e.g., sscop:sscf-nni, sscop:alcap,
sscop:nbap, …​)

User DLTs dissector table

 When a pcap file uses one of the user DLTs (147 to 162) Wireshark uses this
table to know which dissector(s) to use for each user DLT.

This table is a user table, as described in User Accessible Tables, with the
following fields:

	
DLT

	
One of the user dlts.

	
Payload dissector

	
This is the name of the payload dissector (the lowest layer in the packet data).
(e.g., “eth_withfcs, "eth_withoutfcs”, and "eth_maybefcs" respectively for Ethernet frames that do, do not, or might possibly include the FCS at the end, “ip” for trying IPv4 then IPv6)

	
Header size

	
If there is a header (before the payload) this tells which
size this header is. A value of 0 disables the header dissector.

	
Header dissector

	
The name of the header dissector to be used (uses “data” as default).

	
Trailer size

	
If there is a trailer (after the payload) this tells which
size this trailer is. A value of 0 disables the trailer dissector.

	
Trailer dissector

	
The name of the trailer dissector to be used (uses “data” as default).

Protobuf Search Paths

 The
binary wire format
of Protocol Buffers (Protobuf) messages are not self-described protocol. For
example, the varint wire type in protobuf packet may be converted to int32, int64,
uint32, uint64, sint32, sint64, bool or enum field types of
protocol buffers language.
Wireshark should be configured with Protocol Buffers language files (*.proto) to
enable proper dissection of protobuf data (which may be payload of
gRPC) based on the message, enum and field definitions.

You can specify protobuf search paths at the Protobuf protocol preferences.
For example, if you defined a proto file with path d:/my_proto_files/helloworld.proto
and the helloworld.proto contains a line of import "google/protobuf/any.proto";
because the any type of official protobuf library is used. And the real path of
any.proto is d:/protobuf-3.4.1/include/google/protobuf/any.proto. You should
add the d:/protobuf-3.4.1/include/ and d:/my_proto_files paths into protobuf
search paths.

The configuration for the protobuf search paths is a user table, as described
in User Accessible Tables, with the following fields:

	
Protobuf source directory

	
This specifies a directory containing protobuf source files. For example,
d:/protobuf-3.4.1/include/ and d:/my_proto_files in Windows, or
/usr/include/ and /home/alice/my_proto_files in Linux/UNIX.

	
Load all files

	
If this option is enabled, Wireshark will load all *.proto files in this directory
and its subdirectories when Wireshark startup or protobuf search paths preferences
changed. Note that the source directories that configured to protobuf official or third
libraries path (like d:/protobuf-3.4.1/include/) should not be set to load all
files, that may cause unnecessary memory use.

Protobuf UDP Message Types

 If the payload of UDP on certain ports is Protobuf encoding, Wireshark use this table
to know which Protobuf message type should be used to parsing the data on the specified
UDP port(s).

The configuration for UDP Port(s) to Protobuf message type maps is a user table, as
described in User Accessible Tables, with the following fields:

	
UDP Ports

	
The range of UDP ports. The format may be "8000" or "8000,8008-8088,9080".

	
Message Type

	
The Protobuf message type as which the data on the specified udp port(s) should be parsed.
The message type is allowed to be empty, that means let Protobuf to dissect the data on
specified UDP ports as normal wire type without precise definitions.

Tips: You can create your own dissector to call Protobuf dissector. If your dissector is
written in C language, you can pass the message type to Protobuf dissector by data
parameter of call_dissector_with_data() function. If your dissector is written in Lua, you
can pass the message type to Protobuf dissector by pinfo.private["pb_msg_type"]. The format
of data and pinfo.private["pb_msg_type"] is

 "message," message_type_name

For example:

 message,helloworld.HelloRequest

the helloworld is package name, HelloRequest is message type.

MATE

Introduction

 MATE: Meta Analysis and Tracing Engine

What is MATE? Well, to keep it very short, with MATE you can create user
configurable extension(s) of the display filter engine.

MATE’s goal is to enable users to filter frames based on information extracted
from related frames or information on how frames relate to each other. MATE
was written to help troubleshooting gateways and other systems where a "use"
involves more protocols. However, MATE can be used as well to analyze other
issues regarding an interaction between packets like response times,
incompleteness of transactions, presence/absence of certain attributes in a
group of Protocol Data Units (PDUs) and more.

MATE is a Wireshark plugin that allows the user to specify how different
frames are related to each other. To do so, MATE extracts data from the frames'
tree and then, using that information, tries to group the frames based on how
MATE is configured. Once the PDUs are related, MATE will create a "protocol"
tree with fields the user can filter with. The fields will be almost the same
for all the related frames, so one can filter a complete session spanning
several frames containing more protocols based on an attribute appearing in
some related frame. Other than that MATE allows to filter frames based on
response times, number of PDUs in a group and a lot more.

So far MATE has been used to:

	
Filter all packets of a call using various protocols knowing just the
calling number. (MATE’s original goal)

	
Filter all packets of all calls using various protocols based on the release
cause of one of its "segments".

	
Extrapolate slow transactions from very "dense" captures. (finding requests
that timeout)

	
Find incomplete transactions (no responses)

	
Follow requests through more gateways/proxies.

	
more…​

Getting Started

 These are the steps to try out MATE:

	
Run Wireshark and check if the plugin is installed (MATE should
appear in Help→About Wireshark:Plugins)

	
Get a configuration file e.g., tcp.mate (see Mate/Examples
for more) and place it somewhere on your harddisk.

	
Go to Edit→Preferences…​→Protocols→MATE and set the Configuration Filename to the file
you want to use and restart Wireshark.

	
Load a corresponding capture file (e.g.,
http.cap) and see if MATE
has added some new display filter fields, something like: mate tcp_pdu:1→tcp_ses:1
or, at prompt: path_to/wireshark -o "mate.config: tcp.mate" -r http.cap.

If everything went well, your packet details might look something like this:

[image: ws mate tcp output]

Figure 140. Packet Details - MATE TCP Session (tcp.mate)

MATE Overview

Introduction

 MATE creates a filterable tree based on information contained in frames that
share some relationship with information obtained from other frames. The way
these relationships are made is described in a configuration file. The
configuration file tells MATE what makes a PDU and how to relate it to other
PDUs.

MATE analyzes each frame to extract relevant information from the "protocol"
tree of that frame. The extracted information is contained in MATE PDUs;
these contain a list of relevant attributes taken from the tree. From now on, I
will use the term "PDU" to refer to the objects created by MATE containing the
relevant information extracted from the frame; I’ll use "frame" to refer to the
"raw" information extracted by the various dissectors that pre-analyzed the frame.

For every PDU, MATE checks if it belongs to an existing "Group of PDUs" (GOP).
If it does, it assigns the PDU to that GOP and moves any new relevant attributes
to the GOP’s attribute list. How and when do PDUs belong to GOPs is described
in the configuration file as well.

Every time a GOP is assigned a new PDU, MATE will check if it matches the
conditions to make it belong to a "Group of Groups" (GOG). Naturally the
conditions that make a GOP belong to a GOG are taken from the configuration
file as well.

Once MATE is done analyzing the frame it will be able to create a "protocol"
tree for each frame based on the PDUs, the GOPs they belong to and naturally any
GOGs the former belongs to.

How to tell MATE what to extract, how to group it and then how to relate those
groups is made using AVPs and AVPLs.

Information in MATE is contained in Attribute Value Pairs (AVPs). AVPs are made
of two strings: the name and the value. AVPs are used in the configuration and
there they have an operator as well. There are various ways AVPs can be matched
against each other using those operators.

AVPs are grouped into AVP Lists (AVPLs). PDUs, GOPs and GOGs have an AVPL each.
Their AVPLs will be matched in various ways against others coming from the
configuration file.

MATE will be instructed how to extract AVPs from frames in order to create a PDU
with an AVPL. It will be instructed as well, how to match that AVPL against the
AVPLs of other similar PDUs in order to relate them. In MATE the relationship
between PDUs is a GOP, it has an AVPL as well. MATE will be configured with other
AVPLs to operate against the GOP’s AVPL to relate GOPs together into GOGs.

A good understanding on how AVPs and AVPLs work is fundamental to understand how
MATE works.

About MATE

 MATE was originally written by Luis Ontanon, a Telecommunications systems
troubleshooter, as a way to save time filtering out the packets of a single call
from huge capture files using just the calling number. Later he used the time he
had saved to make it flexible enough to work with protocols other than the ones
he was directly involved with.

Attribute Value Pairs (AVP)

 Information used by MATE to relate different frames is contained in Attribute
Value Pairs (AVPs). AVPs are made of two strings - the name and the value. When
AVPs are used in the configuration, an operator is defined as well. There are
various ways AVPs can be matched against each other using those operators.

 avp_name="avp's value"
 another_name= "1234 is the value"

The name is a string used to refer to a "type" of an AVP. Two AVPs won’t match
unless their names are identical.

The name must start with a lowercase letter (a-z) and can contain only alphanumeric characters
(a-zA-Z0-9) and the special characters "_", "-", and ".". The name ends with an operator.

You should not use uppercase characters in names, or names that start with “.” or
“_”. Capitalized names are reserved for configuration parameters (we’ll call them
keywords); nothing forbids you from using capitalized strings for other things as
well but it probably would be confusing. I’ll avoid using capitalized words for
anything but the keywords in this document, the reference manual, the examples
and the base library. Names that start with a “.” would be very confusing as well
because in the old grammar, AVPL transforms use names starting with a “.” to
indicate they belong to the replacement AVPL.

The value is a string that is either set in the configuration (for configuration
AVPs) or by Wireshark while extracting interesting fields from a frame’s tree.
The values extracted from fields use the same representation as they do in filter
strings except that no quotes are used.

The value will be dealt with as a string even if it is a number. If there are
any spaces in the value, the value must be between quotes "".
Values that are also keywords such as True and False should also be wrapped
in quotes ("True", "False").

 ip_addr=10.10.10.11
 tcp_port=1234
 binary_data=01:23:45:67:89:ab:cd:ef
 parameter12=0x23aa
 parameter_with_spaces="this value has spaces"

The way two AVPs with the same name might match is described by the operator.
Remember two AVPs won’t match unless their names are identical. In MATE, match
operations are always made between the AVPs extracted from frames (called data
AVPs) and the configuration’s AVPs.

Currently defined MATE AVP match operators are:

	
Equal = will match if the string given completely matches the data
AVP’s value string

	
Not Equal ! will match only if the given value string is not equal to
the data AVP’s value string

	
One Of {} will match if one of the possible strings listed is equal to
the data AVP’s value string

	
Starts With ^ will match if the string given matches the first
characters of the data AVP’s value string

	
Ends With $ will match if the string given matches the last characters
of the data AVP’s value string

	
Contains ~ will match if the string given matches any substring of the
data AVP’s value string

	
Lower Than < will match if the data AVP’s value string is semantically
lower than the string given

	
Higher Than > will match if the data AVP’s value string is semantically
higher than the string given

	
Exists ? (the ? can be omitted) will match as far as a data AVP of the
given name exists

AVP lists (AVPL)

 An AVPL is a set of diverse AVPs that can be matched against other AVPLs. Every
PDU, GOP and GOG has an AVPL that contains the information regarding it. The
rules that MATE uses to group PDUs and GOPs are AVPL operations.

There will never be two identical AVPs in a given AVPL. However, we can have
more than one AVP with the same name in an AVPL as long as their values are
different.

Some AVPL examples:

 (addr=10.20.30.40, addr=192.168.0.1, tcp_port=21, tcp_port=32534, user_cmd=PORT,
 data_port=12344, data_addr=192.168.0.1)
 (addr=10.20.30.40, addr=192.168.0.1, channel_id=22:23, message_type=Setup,
 calling_number=1244556673)
 (addr=10.20.30.40, addr=192.168.0.1, ses_id=01:23:45:67:89:ab:cd:ef)
 (user_id=pippo, calling_number=1244556673, assigned_ip=10.23.22.123)

In MATE there are two types of AVPLs:

	
data AVPLs that contain information extracted from frames.

	
configuration AVPLs that come from the configuration and are used to tell MATE how
to relate items based on their data AVPLs.

Data AVPLs can be operated against configuration AVPLs in various ways:

	
Loose Match: Will match if at least one of the AVPs of each AVPL
match. If it matches it will return an AVPL containing all AVPs from the data
AVPL that did match the configuration AVPs.

	
"Every" Match: Will match if none of the AVPs of the configuration AVPL
fails to match a present AVP in the data AVPL, even if not all of the
configuration AVPs have a match. If it matches it will return an AVPL containing
all AVPs from the data AVPL that did match one AVP in the configuration AVPL.

	
Strict Match: Will match if and only if every one of the configuration
AVPs have at least one match in the data AVPL. If it matches it will return
an AVPL containing the AVPs from the data AVPL that matched.

	
There’s also a Merge operation that is to be performed between AVPLs
where all the AVPs that don’t exist in the data AVPL but exist in the configuration
will be added to the data AVPL.

	
Other than that, there are Transforms - a combination
of a match AVPL and an AVPL to merge.

MATE Frame Analysis

 MATE’s analysis of a frame is performed in three phases:

	
In the first phase, MATE attempts to extract a MATE PDU from the frame’s
protocol tree. MATE will create a PDU if MATE’s config has a Pdu declaration
whose Proto is contained in the frame.

	
In the second phase, if a PDU has been extracted from the frame, MATE will try
to group it to other PDUs into a GOP (Group of PDUs) by matching the key
criteria given by a Gop declaration. If there is no GOP yet with the key
criteria for the PDU, MATE will try to create a new GOP for it if it matches the
Start criteria given in the Gop declaration.

	
In the third phase, if there’s a GOP for the PDU, MATE will try to group this
GOP with other GOPs into a GOG (Group of Groups) using the criteria given by the
Member criteria of a Gog declaration.

[image: ws mate analysis]

Figure 141. MATE Analysis (PDU→GOP→GOG) flowchart

The extraction and matching logic comes from MATE’s configuration; MATE’s
configuration file is specified by the mate.config preference. By default it is
an empty string which means: do not configure MATE.

The config file tells MATE what to look for in frames; How to make PDUs out of
it; How will PDUs be related to other similar PDUs into GOPs; And how GOPs
relate into GOGs.

The MATE configuration file is a list of declarations. There are 4 types of
declarations: Transform, Pdu, Gop, and Gog. A Transform block must be
before any of the other block declarations that may use it.

Create PDUs (Phase 1)

 MATE will look in the tree of every frame to see if there is useful data to
extract, and if there is, it will create one or more PDU objects containing the
useful information.

The first part of MATE’s analysis is the "PDU extraction".

PDU data extraction

 MATE will make a PDU for each different proto field of Proto type present in the
frame. MATE will fetch from the field’s tree those fields that are defined in
the PDU declaration block declaration whose initial offset in the frame is within the
boundaries of the current Proto and those of the given Transport and Payload
statements.

 Pdu dns_pdu Proto dns Transport ip {
 Extract addr From ip.addr;
 Extract dns_id From dns.id;
 Extract dns_resp From dns.flags.response;
};

[image: ws mate dns pane]

Figure 142. Wireshark window - fields for PDU extraction

Once MATE has found a Proto field for which to create a PDU from the frame it
will move backwards in the frame looking for the respective Transport fields.
After that it will create AVPs named as each of those given in the rest of the
AVPL for every instance of the fields declared as its values.

[image: ws mate dns pdu]

Figure 143. Frame fields mapped to PDU attributes

Sometimes we need information from more than one Transport protocol. In that
case MATE will check the frame looking backwards to look for the various
Transport protocols in the given stack. MATE will choose only the closest
transport boundary per "protocol" in the frame.

This way we’ll have all PDUs for every Proto that appears in a frame match its
relative transports.

 Pdu isup_pdu Proto isup Transport mtp3/ip {
 Extract addr From ip.addr;

 Extract m3pc From mtp3.dpc;
 Extract m3pc From mtp3.opc;

 Extract cic From isup.cic;
 Extract isup_msg From isup.message_type;
};

[image: ws mate isup over mtp3 over ip]

Figure 144. Frame containing multiple PDUs

This allows to assign the right Transport to the PDU avoiding duplicate
transport protocol entries (in case of tunneled ip over ip for example).

 Pdu ftp_pdu Proto ftp Transport tcp/ip {
 Extract addr From ip.addr;
 Extract port From tcp.port;
 Extract ftp_cmd From ftp.command;
};

[image: ws mate ftp over gre]

Figure 145. Frame with encapsulated (tunneled) fields

Other than the mandatory Transport there is also an optional Payload
statement, which works pretty much as Transport but refers to elements after
the Proto's range. It is useful in those cases where the payload protocol
might not appear in a PDU but nevertheless the PDU belongs to the same category.

 Pdu mmse_over_http_pdu Proto http Transport tcp/ip {

 Payload mmse;

 Extract addr From ip.addr;
 Extract port From tcp.port;

 Extract content From http.content_type;
 Extract host From http.host;
 Extract http_rq From http.request;
 Extract method From http.request.method;
 Extract resp From http.response.code;

 Extract msg_type From mmse.message_type;
 Extract notify_status From mmse.status;
 Extract send_status From mmse.response_status;
 Extract trx From mmse.transaction_id;
};

[image: ws mate mmse over http]

Figure 146. Extract from Payload fields

Conditions on which to create PDUs

 There might be cases in which we won’t want MATE to create a PDU unless some of
its extracted attributes meet or do not meet some criteria. For that we use the
Criteria statements of the Pdu declarations.

 Pdu isup_pdu Proto isup Transport mtp3/ip {
 ...

 // MATE will create isup_pdu PDUs only when there is not a point code '1234'
 Criteria Reject Strict (m3pc=1234);
};

Pdu ftp_pdu Proto ftp Transport tcp/ip {
 ...

 // MATE will create ftp_pdu PDUs only when they go to port 21 of our ftp_server
 Criteria Accept Strict (addr=10.10.10.10, port=21);
};

The Criteria statement is given an action (Accept or Reject), a match type
(Strict, Loose or Every) and an AVPL against which to match the currently
extracted one.

Transforming the attributes of a PDU

 Once the fields have been extracted into the PDU’s AVPL, MATE will apply any
declared Transform to it. The way transforms are applied and how they work
is described later on. However, it’s useful to know that once the AVPL for the
PDU is created, it may be transformed before being analyzed. That way we can
massage the data to simplify the analysis.

MATE’s PDU tree

 Every successfully created PDU will add a MATE tree to the frame dissection. If
the PDU is not related to any GOP, the tree for the PDU will contain just the
PDU’s info. If it is assigned to a GOP, the tree will also contain the GOP items,
and the same applies for the GOG level.

 mate dns_pdu:1
 dns_pdu: 1
 dns_pdu time: 3.750000
 dns_pdu Attributes
 dns_resp: False
 dns_id: 0x8cac
 addr: 10.194.4.11
 addr: 10.194.24.35

The PDU’s tree contains some filterable fields

	
mate.dns_pdu will contain the number of the "dns_pdu" PDU

	
mate.dns_pdu.RelativeTime will contain the time passed since the beginning
of the capture in seconds

	
the tree will contain the various attributes of the PDU as well, these will
all be strings (to be used in filters as "10.0.0.1", not as 10.0.0.1)

	
mate.dns_pdu.dns_resp

	
mate.dns_pdu.dns_id

	
mate.dns_pdu.addr

Grouping PDUs together (GOP) (Phase 2)

 Once MATE has created the PDUs it passes to the PDU analysis phase. During the
PDU analysis phase MATE will try to group PDUs of the same type into 'Groups of
PDUs' (aka GOPs) and copy some AVPs from the PDU’s AVPL to the GOP’s AVPL.

[image: ws mate pdu analysis]

Figure 147. Grouping PDUs (GOP) flowchart

What can belong to a GOP

 Given a PDU, the first thing MATE will do is to check if there is any GOP
declaration in the configuration for the given PDU type. If so, it will use its
Match AVPL to match it against the PDU’s AVPL; if they don’t match, the
analysis phase is done. If there is a match, the AVPL is the GOP’s candidate key
which will be used to search the index of GOPs for the GOP to which to assign
the current PDU. If there is no such GOP and this PDU does not match the
Start criteria of a Gop declaration for the PDU type, the PDU will remain
unassigned and only the analysis phase will be done.

 Gop ftp_ses On ftp_pdu Match (addr, addr, port, port) {...};
Gop dns_req On dns_pdu Match (addr, addr, dns_id) {...};
Gop isup_leg On isup_pdu Match (m3pc, m3pc, cic) {...};

Start of a GOP

 If there was a match, the candidate key will be used to search the index of GOPs
to see if there is already a GOP matching the GOP’s key the same way. If there
is such a match in the GOPs collection, and the PDU doesn’t match the Start
AVPL for its type, the PDU will be assigned to the matching GOP. If it is a
Start match, MATE will check whether or not that GOP has been already
stopped. If the GOP has been stopped, a new GOP will be created and will replace
the old one in the index of GOPs.

 Gop ftp_ses On ftp_pdu Match (addr, addr, port, port) {
 Start (ftp_cmd=USER);
};

Gop dns_req On dns_pdu Match (addr, addr, dns_id) {
 Start (dns_resp="True");
};

Gop isup_leg On isup_pdu Match (m3pc, m3pc, cic) {
 Start (isup_msg=1);
};

If no Start is given for a GOP, a PDU whose AVPL matches an existing GOP’s
key will act as the start of a GOP.

What goes into the GOP’s AVPL

 Once we know a GOP exists and the PDU has been assigned to it, MATE will copy
into the GOP’s AVPL all the attributes matching the key plus any AVPs of the
PDU’s AVPL matching the Extra AVPL.

 Gop ftp_ses On ftp_pdu Match (addr, addr, port, port) {
 Start (ftp_cmd=USER);
 Extra (pasv_prt, pasv_addr);
};

Gop isup_leg On isup_pdu Match (m3pc, m3pc, cic) {
 Start (isup_msg=1);
 Extra (calling, called);
};

End of a GOP

 Once the PDU has been assigned to the GOP, MATE will check whether or not the
PDU matches the Stop, if it happens, MATE will mark the GOP as stopped. Even
after stopped, a GOP may get assigned new PDUs matching its key, unless such
PDU matches Start. If it does, MATE will instead create a new GOP starting
with that PDU.

 Gop ftp_ses On ftp_pdu Match (addr, addr, port, port) {
 Start (ftp_cmd=USER);
 Stop (ftp_cmd=QUIT); // The response to the QUIT command will be assigned to the same GOP
 Extra (pasv_prt, pasv_addr);
};

Gop dns_req On dns_pdu Match (addr, addr, dns_id) {
 Start (dns_resp="False");
 Stop (dns_resp="True");
};

Gop isup_leg On isup_pdu Match (m3pc, m3pc, cic) {
 Start (isup_msg=1); // IAM
 Stop (isup_msg=16); // RLC
 Extra (calling, called);
};

If no Stop criterium is stated for a given GOP, the GOP will be stopped as
soon as it is created. However, as with any other GOP, PDUs matching the GOP’s
key will still be assigned to the GOP unless they match a Start condition,
in which case a new GOP using the same key will be created. To group multiple
PDUs that match the Start, add a bogus Stop such as

 Gop frame_ses On frame_pdu Match (frame_time) {
 Start (frame_time);
 Stop (frame_time="FOO");
};

GOP’s tree

 For every frame containing a PDU that belongs to a GOP, MATE will create a tree
for that GOP.

The example below represents the tree created by the dns_pdu and dns_req
examples.

 ...
MATE dns_pdu:6->dns_req:1
 dns_pdu: 6
 dns_pdu time: 2.103063
 dns_pdu time since beginning of Gop: 2.103063
 dns_pdu Attributes
 dns_resp: True
 dns_id: 0x8cac
 addr: 10.194.4.11
 addr: 10.194.24.35
 dns_req: 1
 GOP Key: addr=10.194.4.11; addr=10.194.24.35; dns_id=0x8cac;
 dns_req Attributes
 dns_id: 0x8cac
 addr: 10.194.4.11
 addr: 10.194.24.35
 dns_req Times
 dns_req start time: 0.000000
 dns_req hold time: 2.103063
 dns_req duration: 2.103063
 dns_req number of PDUs: 2
 Start PDU: in frame 1
 Stop PDU: in frame 6 (2.103063 : 2.103063)

Other than the PDU’s tree, this one contains information regarding the
relationship between the PDUs that belong to the GOP. That way we have:

	
mate.dns_req which contains the id of this dns_req GOP. This will be present
in frames that belong to dns_req GOPs.

	
mate.dns_req.dns_id and mate.dns_req.addr which represent the values of the
attributes copied into the GOP.

	
the timers of the GOP

	
mate.dns_req.StartTime time (in seconds) passed since beginning of capture
until GOP’s start.

	
mate.dns_req.Time time passed between the start PDU and the stop PDU assigned
to this GOP (only created if a Stop criterion has been declared for the GOP and
a matching PDU has arrived).

	
mate.dns_req.Duration time passed between the start PDU and the last PDU
assigned to this GOP.

	
mate.dns_req.NumOfPdus the number of PDUs that belong to this GOP

	
mate.dns_req.Pdu a filterable list of frame numbers of the PDUs of this GOP

GOP’s timers

 Note that there are two "timers" for a GOP:

	
Time, which is defined only for GOPs that have been Stopped, and gives the
time passed between the Start and the Stop PDUs.

	
Duration, which is defined for every GOP regardless of its state, and give
the time passed between its Start PDU and the last PDU that was assigned to
that GOP.

So:

	
we can filter for PDUs that belong to GOPs that have been Stopped with
mate.xxx.Time

	
we can filter for PDUs that belong to unstopped GOPs with mate.xxx &&
!mate.xxx.Time

	
we can filter for PDUs that belong to stopped GOPs using mate.xxx.Duration

	
we can filter for PDUs that belong to GOPs that have taken more (or less) time
that 0.5s to complete with mate.xxx.Time > 0.5 (you can try these also as
color filters to find out when response times start to grow)

Grouping GOPs together (GOG) (Phase 3)

 When GOPs are created, or whenever their AVPL changes, GOPs are (re)analyzed to
check if they match an existent group of groups (GOG) or can create a new one.
The GOP analysis is divided into two phases. In the first phase, the still
unassigned GOP is checked to verify whether it belongs to an already existing
GOG or may create a new one. The second phase eventually checks the GOG and
registers its keys in the index of GOGs.

[image: ws mate gop analysis]

Figure 148. Grouping GOPs (GOG) flowchart

There are several reasons for the author to believe that this feature needs to
be reimplemented, so probably there will be deep changes in the way this is done
in the near future. This section of the documentation reflects the version of
MATE as of Wireshark 0.10.9; in future releases this will change.

Declaring a Group Of Groups (GOG)

 The first thing we have to do configuring a GOG is to tell MATE that it exists.

 Gog http_use {
 ...
};

Telling MATE what could be a GOG member

 Then we have to tell MATE what to look for a match in the candidate GOPs.

 Gog http_use {
 Member http_ses (host);
 Member dns_req (host);
};

Getting interesting data into the GOG

 Most often, also other attributes than those used for matching would be
interesting. In order to copy from GOP to GOG other interesting attributes, we
might use Extra like we do for GOPs.

 Gog http_use {
 ...
 Extra (cookie);
};

GOG’s tree

 mate http_pdu:4->http_req:2->http_use:1
 http_pdu: 4
 http_pdu time: 1.309847
 http_pdu time since beginning of Gop: 0.218930
 http_req: 2
 ... (the gop's tree for http_req: 2) ..
 http_use: 1
 http_use Attributes
 host: www.example.com
 http_use Times
 http_use start time: 0.000000
 http_use duration: 1.309847
 number of GOPs: 3
 dns_req: 1
 ... (the gop's tree for dns_req: 1) ..
 http_req: 1
 ... (the gop's tree for http_req: 1) ..
 http_req of current frame: 2

We can filter on:

	
the timers of the GOG

	
mate.http_use.StartTime time (in seconds) passed since beginning of capture until GOG’s start.

	
mate.http_use.Duration time elapsed between the first frame of a GOG and the last one assigned to it.

	
the attributes passed to the GOG

	
mate.http_use.host

	
mate.http_use.NumOfGops the number of GOPs that belong to this GOG

	
mate.http_use.GopStart the start frame of a GOP

	
mate.http_use.GopStop the stop frame of a GOP

Adjust data (AVPL Transforms)

 A Transform is a sequence of Match rules optionally completed with modification
of the match result by an additional AVPL. Such modification may be an Insert
(merge) or a Replace. Transforms can be used as helpers to manipulate an item’s
AVPL before it is processed further. They come to be very helpful in several
cases.

Syntax

 AVPL Transforms are declared in the following way:

 Transform name {
 Match [Strict|Every|Loose] match_avpl [Insert|Replace] modify_avpl;
 ...
};

The name is the handle to the AVPL transform. It is used to refer to the
transform when invoking it later.

The Match declarations instruct MATE what and how to match against the data
AVPL and how to modify the data AVPL if the match succeeds. They will be
executed in the order they appear in the config file whenever they are invoked.

The optional match type qualifier (Strict, Every, or Loose) is used
to choose the Match type; Strict is the default value which
may be omitted.

The optional modification mode qualifier instructs MATE how the modify AVPL
should be used:

	
the default value Insert (which may be omitted) causes the modify_avpl
to be merged to the existing data AVPL,

	
Replace causes all the matching AVPs from the data AVPL to be
replaced by the modify_avpl.

The modify_avpl may be an empty one; this comes useful in some cases for
both Insert and Replace modification modes.

 Transform rm_client_from_http_resp1 {
 Match (http_rq); //first match wins so the request won't get the not_rq attribute inserted
 Match Every (addr) Insert (not_rq); //this line won't be evaluated if the first one matched so not_rq won't be inserted to requests
};

Transform rm_client_from_http_resp2 {
 Match (not_rq, client) Replace (); //replace "client and not_rq" with nothing
};

Examples:

 Transform insert_name_and {
 Match Strict (host=10.10.10.10, port=2345) Insert (name=JohnDoe);
};

adds name=JohnDoe to the data AVPL if it contains host=10.10.10.10 and
port=2345

 Transform insert_name_or {
 Match Loose (host=10.10.10.10, port=2345) Insert (name=JohnDoe);
};

adds name=JohnDoe to the data AVPL if it contains host=10.10.10.10 or
port=2345

 Transform replace_ip_address {
 Match (host=10.10.10.10) Replace (host=192.168.10.10);
};

replaces the original host=10.10.10.10 by host=192.168.10.10

 Transform add_ip_address {
 Match (host=10.10.10.10) (host=192.168.10.10);
};

adds (inserts) host=192.168.10.10 to the AVPL, keeping the original
host=10.10.10.10 in it too

 Transform replace_may_be_surprising {
 Match Loose (a=aaaa, b=bbbb) Replace (c=cccc, d=dddd);
 };

gives the following results:

	
(a=aaaa, b=eeee) gets transformed to (b=eeee, c=cccc, d=dddd) because a=aaaa
did match so it got replaced while b=eeee did not match so it has been left
intact,

	
(a=aaaa, b=bbbb) gets transformed to (c=cccc, d=dddd) because both a=aaaa and
b=bbbb did match.

Usage

 Once declared, Transforms can be added to the declarations of PDUs, GOPs or
GOGs. This is done by adding the Transform name_list statement to the
declaration:

 Pdu my_proto_pdu Proto my_proto Transport ip {
 Extract addr From ip.addr;
 ...
 Transform my_pdu_transform[, other_pdu_transform[, yet_another_pdu_transform]];
};

	
In case of PDU, the list of transforms is applied against the PDU’s AVPL
after its creation.

	
In case of GOP and GOG, the list of transforms is applied against their
respective AVPLs when they are created and every time they change.

Operation

[image: ws mate transform]

Figure 149. Applying Transform flowchart

	
A list of previously declared Transforms may be given to every Item (Pdu, Gop,
or Gog), using the Transform statement.

	
Every time the AVPL of an item changes, it will be operated against all the
Transforms on the list given to that item. The Transforms on the list are
applied left to right.

	
Inside each of the Transforms, the item’s AVPL will be operated against the
Transform’s Match clauses starting from the topmost one, until all have been
tried or until one of them succeeds.

MATE’s Transforms can be used for many different things, like:

Multiple Start/Stop conditions for a GOP

 Using Transforms we can add more than one start or stop condition to a GOP.

 Transform start_cond {
 Match (attr1=aaa,attr2=bbb) (msg_type=start);
 Match (attr3=www,attr2=bbb) (msg_type=start);
 Match (attr5^a) (msg_type=stop);
 Match (attr6$z) (msg_type=stop);
};

Pdu pdu ... {
 ...
 Transform start_cond;
}

Gop gop ... {
 Start (msg_type=start);
 Stop (msg_type=stop);
 ...
}

Marking GOPs and GOGs to filter them easily

 Transform marks {
 Match (addr=10.10.10.10, user=john) (john_at_host);
 Match (addr=10.10.10.10, user=tom) (tom_at_host);
}

...

Gop my_gop ... {
 ...
 Transform marks;
}

After that we can use a display filter mate.my_gop.john_at_host or
mate.my_gop.tom_at_host

Adding (Insert) direction knowledge to MATE

 Transform direction_as_text {
 Match (src=192.168.0.2, dst=192.168.0.3) Insert (direction=from_2_to_3);
 Match (src=192.168.0.3, dst=192.168.0.2) Insert (direction=from_3_to_2);
};

Pdu my_pdu Proto my_proto Transport tcp/ip {
 Extract src From ip.src;
 Extract dst From ip.dst;
 Extract addr From ip.addr;
 Extract port From tcp.port;
 Extract start From tcp.flags.syn;
 Extract stop From tcp.flags.fin;
 Extract stop From tcp.flags.rst;
 Transform direction_as_text;
}

Gop my_gop On my_pdu Match (addr,addr,port,port) {
 ...
 Extra (direction);
}

The original example (below) would delete src and dst then add direction.

 Transform direction_as_text {
 Match (src=192.168.0.2, dst=192.168.0.3) Replace (direction=from_2_to_3);
 Match (src=192.168.0.3, dst=192.168.0.2) Replace (direction=from_3_to_2);
};

NAT

 NAT can create problems when tracing, but we can easily work around it by
Transforming the NATed IP address and the Ethernet address of the router into
the non-NAT address:

 Transform denat {
 Match (addr=192.168.0.5, ether=01:02:03:04:05:06) Replace (addr=123.45.67.89);
 Match (addr=192.168.0.6, ether=01:02:03:04:05:06) Replace (addr=123.45.67.90);
 Match (addr=192.168.0.7, ether=01:02:03:04:05:06) Replace (addr=123.45.67.91);
}

Pdu my_pdu Proto my_proto transport tcp/ip/eth {
 Extract ether From eth.addr;
 Extract addr From ip.addr;
 Extract port From tcp.port;
 Transform denat;
}

MATE’s configuration tutorial

 We’ll show a MATE configuration that first creates GOPs for every DNS and HTTP
request, then it ties the GOPs together in a GOG based on the host. Finally,
we’ll separate into different GOGs request coming from different users.

With this MATE configuration loaded we can:

	
use mate.http_use.Duration > 5.5 to filter frames based on the time it takes
to load a complete page from the DNS request to resolve its name until the last
image gets loaded.

	
use mate.http_use.client == "10.10.10.20" && mate.http_use.host == "www.example.com"
to isolate DNS and HTTP packets related to a visit of a certain user.

	
use mate.http_req.Duration > 1.5 to filter all the packets of HTTP requests
that take more than 1.5 seconds to complete.

The complete config file is available on the Wireshark Wiki:
https://wiki.wireshark.org/Mate/Tutorial

Note: This example uses dns.qry.name which is defined since Wireshark
version 0.10.9. Supposing you have a MATE plugin already installed you can test
it with the current Wireshark version.

A GOP for DNS requests

 First we’ll tell MATE how to create a GOP for each DNS request/response.

MATE needs to know what makes a DNS PDU. We describe it using a Pdu
declaration:

 Pdu dns_pdu Proto dns Transport ip {
 Extract addr From ip.addr;
 Extract dns_id From dns.id;
 Extract dns_resp From dns.flags.response;
};

Using Proto dns we tell MATE to create PDUs every time it finds dns. Using
Transport ip we inform MATE that some of the fields we are interested are
in the ip part of the frame. Finally, we tell MATE to import ip.addr as
addr, dns.id as dns_id and dns.flags.response as dns_resp.

Once we’ve told MATE how to extract dns_pdus we’ll tell it how to match
requests and responses and group them into a GOP. For this we’ll use a Gop
declaration to define the GOP, and then, Start and Stop statements to
tell it when the GOP starts and ends.

 Gop dns_req On dns_pdu Match (addr,addr,dns_id) {
 Start (dns_resp="False");
 Stop (dns_resp="True");
};

Using the Gop declaration we tell MATE that the Name of the GOP is dns_req,
that _dns_pdus_s can become members of the GOP, and what is the key used to match
the PDUs to the GOP.

The key for this GOP is "addr, addr, dns_id". That means that in order to
belong to the same GOP, dns_pdus have to have both addresses and the
request id identical. We then instruct MATE that a dns_req starts whenever
a dns_pdu matches "dns_resp="False"" and that it stops when another dns_pdu
matches "dns_resp="True"".

At this point, if we open a capture file using this configuration, we are able
to use a display filter mate.dns_req.Time > 1 to see only the packets of
DNS requests that take more than one second to complete.

We can use a display filter mate.dns_req && ! mate.dns_req.Time to find
requests for which no response was given. mate.xxx.Time is set only for GOPs
that have being stopped.

A GOP for HTTP requests

 This other example creates a GOP for every HTTP request.

 Pdu http_pdu Proto http Transport tcp/ip {
 Extract addr From ip.addr;
 Extract port From tcp.port;
 Extract http_rq From http.request.method;
 Extract http_rs From http.response;
 DiscardPduData true;
};

Gop http_req On http_pdu Match (addr, addr, port, port) {
 Start (http_rq);
 Stop (http_rs);
};

So, if we open a capture using this configuration

	
filtering with mate.http_req.Time > 1 will give all the requests where the
response header takes more than one second to come

	
filtering with mate.http_req.Duration > 1.5 will show those request that
take more than 1.5 seconds to complete.

You have to know that mate.xxx.Time gives the time in seconds between the PDU
matching the GOP Start clause and the PDU matching the GOP Stop clause (yes, you can create
timers using this!). On the other hand, mate.xxx.Duration gives you the time
passed between the GOP Start and the last PDU assigned to that GOP regardless
whether it is a Stop or not. After the GOP Stop, PDUs matching the GOP’s Key will
still be assigned to the same GOP as far as they don’t match the GOP Start, in
which case a new GOP with the same key will be created.

Getting DNS and HTTP together into a GOG

 We’ll tie together to a single GOG all the HTTP packets belonging to requests
and responses to a certain host and the DNS request and response used to resolve
its domain name using the Pdu and Gop definitions of the previous examples

To be able to group DNS and HTTP requests together, we need to import into the
PDUs and GOPs some part of information that both those protocols share. Once the
PDUs and GOPs have been defined, we can use Extract (for PDUs) and
Extract (for GOPs) statements to tell MATE what other protocol fields are to
be added to PDU’s and GOP’s AVPLs. We add the following statements to the
appropriate declarations:

 Extract host From http.host; // to Pdu http_pdu as the last Extract in the list
 Extra (host); // to Gop http_req after the Stop

 Extract host From dns.qry.name; // to Pdu dns_pdu as the last Extract in the list
 Extra (host); // to Gop dns_req after the Stop

Here we’ve told MATE to import http.host into http_pdu and dns.qry.name
into dns_pdu as host. We also have to tell MATE to copy the host
attribute from the PDUs to the GOPs - we do this using Extra.

Once we have all the data we need in PDUs and GOPs, we tell MATE what makes
different GOPs belong to a certain GOG.

 Gog http_use {
 Member http_req (host);
 Member dns_req (host);
 Expiration 0.75;
};

Using the Gog declaration, we tell MATE to define a GOG type named
http_use whose expiration is 0.75 seconds after all the GOPs that belong to it
had been stopped. After that time, an eventual new GOP with the same key match
will create a new GOG instead of been added to the previous GOG.

Using the Member statements, we tell MATE that http_req*s with the same
*host belong to the same GOG, same thing for *dns_req*s.

So far we have instructed MATE to group every packet related to sessions towards
a certain host. At this point if we open a capture file and:

	
a display filter mate.http_use.Duration > 5 will show only those requests
that have taken more than 5 seconds to complete starting from the DNS request
and ending with the last packet of the HTTP responses.

	
a display filter mate.http_use.host == "www.w3c.org" will show all the
packets (both DNS and HTTP) related to the requests directed to www.w3c.org

Separating requests from multiple users

 "Houston: we’ve had a problem here."

This configuration works fine if used for captures taken at the client’s side
but deeper in the network we’d got a real mess. Requests from many users get
mixed together into http_uses. GOGs are created and stopped almost randomly
(depending on the timing in which GOPs start and stop). How do we get requests
from individual users separated from each other?

MATE has a tool that can be used to resolve this kind of grouping issues. This
tool are the Transforms. Once defined, they can be applied against PDUs,
GOPs and GOGs and they might replace or insert more attributes based on what’s
there. We’ll use them to create an attribute named client, using which we’ll
separate different requests.

For DNS we need the ip.src of the request moved into the GOP only from the DNS
request.

So we first tell MATE to import ip.src as client:

 Extract client From ip.src;

Next, we tell MATE to replace (dns_resp="True", client) with just dns_resp="True" in
the PDU. That way, we’ll keep the attribute client only in the DNS request
PDUs (i.e., packets coming from the client).To do so, we have to add a
Transform declaration (in this case, with just one clause) before the Pdu
declaration which uses it:

 Transform rm_client_from_dns_resp {
 Match (dns_resp="True", client) Replace (dns_resp="True");
};

Next, we invoke the transform by adding the following line after the Extract
list of the dns_pdu PDU:

 Transform rm_client_from_dns_resp;

HTTP is a little trickier. We have to remove the attribute carrying ip.src from
both the response and the "continuations" of the response, but as there is
nothing to filter on for the continuations, we have to add a fake attribute
first. And then we have to remove client when the fake attribute appears.
This is possible due to the fact that the Match clauses in the Transform
are executed one by one until one of them succeeds. First, we declare another
two Transforms:

 Transform rm_client_from_http_resp1 {
 Match (http_rq); //first match wins so the request won't get the not_rq attribute inserted
 Match Every (addr) Insert (not_rq); //this line won't be evaluated if the first one matched so not_rq won't be inserted to requests
};

Transform rm_client_from_http_resp2 {
 Match (not_rq, client) Replace (); //replace "client and not_rq" with nothing (will happen only in the response and eventual parts of it)
};

Next, we add another Extract statement to the http_pdu declaration, and
apply both Transforms declared above in a proper order:

 Extract client From ip.src;
 Transform rm_client_from_http_resp1, rm_client_from_http_resp2;

In MATE, all the Transform_s listed for an item will be evaluated, while
inside a single _Transform, the evaluation will stop at the first successful
Match clause. That’s why we first just match http_rq to get out of the
first sequence before adding the not_rq attribute. Then we apply the second
Transform which removes both not_rq and client if both are there. Yes,
_Transform_s are cumbersome, but they are very useful.

Once we got all what we need in the PDUs, we have to tell MATE to copy the
attribute client from the PDUs to the respective GOPs, by adding client to
Extra lists of both Gop declarations:

 Extra (host, client);

On top of that, we need to modify the old declarations of GOP key to new ones
that include both client and host. So we change the Gog Member
declarations the following way:

 Member http_req (host, client);
 Member dns_req (host, client);

Now we got it, every "usage" gets its own GOG.

MATE configuration examples

 The following is a collection of various configuration examples for MATE. Many
of them are useless because the "conversations" facility does a better job.
Anyway they are meant to help users understanding how to configure MATE.

TCP session (tcp.mate)

 The following example creates a GOP out of every TCP session.

 Transform add_tcp_stop {
 Match (tcp_flags_reset="True") Insert (tcp_stop="True");
 Match (tcp_flags_fin="True") Insert (tcp_stop="True");
};

Pdu tcp_pdu Proto tcp Transport ip {
 Extract addr From ip.addr;
 Extract port From tcp.port;
 Extract tcp_start From tcp.flags.syn;
 Extract tcp_flags_reset From tcp.flags.reset;
 Extract tcp_flags_fin From tcp.flags.fin;
 Transform add_tcp_stop;
};

Gop tcp_ses On tcp_pdu Match (addr, addr, port, port) {
 Start (tcp_start="True");
 Stop (tcp_stop="True");
};

Done;

This probably would do fine in 99.9% of the cases but 10.0.0.1:20→10.0.0.2:22 and 10.0.0.1:22→10.0.0.2:20 would both fall into the same gop if they happen to overlap in time.

	
filtering with mate.tcp_ses.Time > 1 will give all the sessions that last more than one second

	
filtering with mate.tcp_ses.NumOfPdus < 5 will show all tcp sessions that have less than 5 packets.

	
filtering with mate.tcp_ses.Id == 3 will show all the packets for the third tcp session MATE has found

a GOG for a complete FTP session

 This configuration allows to tie a complete passive FTP session (including the
data transfer) in a single GOG.

 Pdu ftp_pdu Proto ftp Transport tcp/ip {
 Extract ftp_addr From ip.addr;
 Extract ftp_port From tcp.port;
 Extract ftp_resp From ftp.response.code;
 Extract ftp_req From ftp.request.command;
 Extract server_addr From ftp.passive.ip;
 Extract server_port From ftp.passive.port;

 LastPdu true;
};

Pdu ftp_data_pdu Proto ftp-data Transport tcp/ip{
 Extract server_addr From ip.src;
 Extract server_port From tcp.srcport;

};

Gop ftp_data On ftp_data_pdu Match (server_addr, server_port) {
 Start (server_addr);
};

Gop ftp_ctl On ftp_pdu Match (ftp_addr, ftp_addr, ftp_port, ftp_port) {
 Start (ftp_resp=220);
 Stop (ftp_resp=221);
 Extra (server_addr, server_port);
};

Gog ftp_ses {
 Member ftp_ctl (ftp_addr, ftp_addr, ftp_port, ftp_port);
 Member ftp_data (server_addr, server_port);
};

Done;

Note: not having anything to distinguish between ftp-data packets makes this
config to create one GOP for every ftp-data packet instead of each transfer.
Pre-started GOPs would avoid this.

using RADIUS to filter SMTP traffic of a specific user

 Spying on people, in addition to being immoral, is illegal in many countries.
This is an example meant to explain how to do it not an invitation to do so.
It’s up to the police to do this kind of job when there is a good reason to do
so.

 Pdu radius_pdu On radius Transport udp/ip {
 Extract addr From ip.addr;
 Extract port From udp.port;
 Extract radius_id From radius.id;
 Extract radius_code From radius.code;
 Extract user_ip From radius.framed_addr;
 Extract username From radius.username;
}

Gop radius_req On radius_pdu (radius_id, addr, addr, port, port) {
 Start (radius_code {1|4|7});
 Stop (radius_code {2|3|5|8|9});
 Extra (user_ip, username);
}

// we define the smtp traffic we want to filter
Pdu user_smtp Proto smtp Transport tcp/ip {
 Extract user_ip From ip.addr;
 Extract smtp_port From tcp.port;
 Extract tcp_start From tcp.flags.syn;
 Extract tcp_stop From tcp.flags.reset;
}

Gop user_smtp_ses On user_smtp (user_ip, user_ip, smtp_port!25) {
 Start (tcp_start=1);
 Stop (tcp_stop=1);
}

// with the following group of groups we'll group together the radius and the smtp
// we set a long expiration to avoid the session expire on long pauses.
Gog user_mail {
 Expiration 1800;
 Member radius_req (user_ip);
 Member user_smtp_ses (user_ip);
 Extra (username);
}

Done;

Filtering the capture file with mate.user_mail.username == "theuser" will
filter the RADIUS packets and SMTP traffic for "theuser".

H323 Calls

 This configuration will create a GOG out of every call.

 Pdu q931 Proto q931 Transport ip {
 Extract addr From ip.addr;
 Extract call_ref From q931.call_ref;
 Extract q931_msg From q931.message_type;
 Extract calling From q931.calling_party_number.digits;
 Extract called From q931.called_party_number.digits;
 Extract guid From h225.guid;
 Extract q931_cause From q931.cause_value;
};

Gop q931_leg On q931 Match (addr, addr, call_ref) {
 Start (q931_msg=5);
 Stop (q931_msg=90);
 Extra (calling, called, guid, q931_cause);
};

Pdu ras Proto h225.RasMessage Transport ip {
 Extract addr From ip.addr;
 Extract ras_sn From h225.requestSeqNum;
 Extract ras_msg From h225.RasMessage;
 Extract guid From h225.guid;
};

Gop ras_req On ras Match (addr, addr, ras_sn) {
 Start (ras_msg {0|3|6|9|12|15|18|21|26|30});
 Stop (ras_msg {1|2|4|5|7|8|10|11|13|14|16|17|19|20|22|24|27|28|29|31});
 Extra (guid);
};

Gog call {
 Member ras_req (guid);
 Member q931_leg (guid);
 Extra (called,calling,q931_cause);
};

Done;

with this we can:

	
filter all signalling for a specific caller: mate.call.caller == "123456789"

	
filter all signalling for calls with a specific release cause: mate.call.q931_cause == 31

	
filter all signalling for very short calls: mate.q931_leg.Time < 5

MMS

 With this example, all the components of an MMS send or receive will be tied
into a single GOG. Note that this example uses the Payload clause because
MMS delivery uses MMSE over either HTTP or WSP. As it is not possible to relate
the retrieve request to a response by the means of MMSE only (the request is
just an HTTP GET without any MMSE), a GOP is made of HTTP PDUs but MMSE data
need to be extracted from the bodies.

 ## WARNING: this example has been blindly translated from the "old" MATE syntax
and it has been verified that Wireshark accepts it. However, it has not been
tested against any capture file due to lack of the latter.

Transform rm_client_from_http_resp1 {
 Match (http_rq);
 Match Every (addr) Insert (not_rq);
};

Transform rm_client_from_http_resp2 {
 Match (not_rq,ue) Replace ();
};

Pdu mmse_over_http_pdu Proto http Transport tcp/ip {
 Payload mmse;
 Extract addr From ip.addr;
 Extract port From tcp.port;
 Extract http_rq From http.request;
 Extract content From http.content_type;
 Extract resp From http.response.code;
 Extract method From http.request.method;
 Extract host From http.host;
 Extract content From http.content_type;
 Extract trx From mmse.transaction_id;
 Extract msg_type From mmse.message_type;
 Extract notify_status From mmse.status;
 Extract send_status From mmse.response_status;
 Transform rm_client_from_http_resp1, rm_client_from_http_resp2;
};

Gop mmse_over_http On mmse_over_http_pdu Match (addr, addr, port, port) {
 Start (http_rq);
 Stop (http_rs);
 Extra (host, ue, resp, notify_status, send_status, trx);
};

Transform mms_start {
 Match Loose() Insert (mms_start);
};

Pdu mmse_over_wsp_pdu Proto wsp Transport ip {
 Payload mmse;
 Extract trx From mmse.transaction_id;
 Extract msg_type From mmse.message_type;
 Extract notify_status From mmse.status;
 Extract send_status From mmse.response_status;
 Transform mms_start;
};

Gop mmse_over_wsp On mmse_over_wsp_pdu Match (trx) {
 Start (mms_start);
 Stop (never);
 Extra (ue, notify_status, send_status);
};

Gog mms {
 Member mmse_over_http (trx);
 Member mmse_over_wsp (trx);
 Extra (ue, notify_status, send_status, resp, host, trx);
 Expiration 60.0;
};

MATE’s configuration library

 The MATE library (will) contains GOP definitions for several protocols. Library
protocols are included in your MATE config using: _Action=Include;
Lib=proto_name;_.

For Every protocol with a library entry, we’ll find defined what from the PDU is
needed to create a GOP for that protocol, eventually any criteria and the very
essential GOP definition (i.e., Gop, Start and Stop).

It seems that this code is written in the old syntax of MATE. So far it has not
been transcribed into the new format. It may still form the basis to recreate
these in the new format.

General use protocols

TCP

 It will create a GOP for every TCP session. If it is used it should be the last
one in the list. And every other proto on top of TCP should be declared with
LastPdu=TRUE; so that a TCP PDU is not created where another pdu type exists.

 Transform add_tcp_stop {
 Match (tcp_flags_reset="True") Insert (tcp_stop="True");
 Match (tcp_flags_fin="True") Insert (tcp_stop="True");
};

Pdu tcp_pdu Proto tcp Transport ip {
 Extract addr From ip.addr;
 Extract port From tcp.port;
 Extract tcp_start From tcp.flags.syn;
 Extract tcp_flags_reset From tcp.flags.reset;
 Extract tcp_flags_fin From tcp.flags.fin;
 Transform add_tcp_stop;
};

Gop tcp_ses On tcp_pdu Match (addr, addr, port, port) {
 Start (tcp_start="True");
 Stop (tcp_stop="True");
};

Done;

DNS

 will create a GOP containing every request and its response (eventually
retransmissions too).

 Action=PduDef; Name=dns_pdu; Proto=dns; Transport=udp/ip; addr=ip.addr; port=udp.port; dns_id=dns.id; dns_rsp=dns.flags.response;

Action=GopDef; Name=dns_req; On=dns_pdu; addr; addr; port!53; dns_id;
Action=GopStart; For=dns_req; dns_rsp=0;
Action=GopStop; For=dns_req; dns_rsp=1;

RADIUS

 A GOP for every transaction.

 Action=PduDef; Name=radius_pdu; Proto=radius; Transport=udp/ip; addr=ip.addr; port=udp.port; radius_id=radius.id; radius_code=radius.code;

Action=GopDef; Name=radius_req; On=radius_pdu; radius_id; addr; addr; port; port;
Action=GopStart; For=radius_req; radius_code|1|4|7;
Action=GopStop; For=radius_req; radius_code|2|3|5|8|9;

RTSP

 Action=PduDef; Name=rtsp_pdu; Proto=rtsp; Transport=tcp/ip; addr=ip.addr; port=tcp.port; rtsp_method=rtsp.method;
Action=PduExtra; For=rtsp_pdu; rtsp_ses=rtsp.session; rtsp_url=rtsp.url;

Action=GopDef; Name=rtsp_ses; On=rtsp_pdu; addr; addr; port; port;
Action=GopStart; For=rtsp_ses; rtsp_method=DESCRIBE;
Action=GopStop; For=rtsp_ses; rtsp_method=TEARDOWN;
Action=GopExtra; For=rtsp_ses; rtsp_ses; rtsp_url;

VoIP/Telephony

 Most protocol definitions here will create one GOP for every Call Leg unless
stated.

ISUP

 Action=PduDef; Name=isup_pdu; Proto=isup; Transport=mtp3; mtp3pc=mtp3.dpc; mtp3pc=mtp3.opc; cic=isup.cic; isup_msg=isup.message_type;

Action=GopDef; Name=isup_leg; On=isup_pdu; ShowPduTree=TRUE; mtp3pc; mtp3pc; cic;
Action=GopStart; For=isup_leg; isup_msg=1;
Action=GopStop; For=isup_leg; isup_msg=16;

Q931

 Action=PduDef; Name=q931_pdu; Proto=q931; Stop=TRUE; Transport=tcp/ip; addr=ip.addr; call_ref=q931.call_ref; q931_msg=q931.message_type;

Action=GopDef; Name=q931_leg; On=q931_pdu; addr; addr; call_ref;
Action=GopStart; For=q931_leg; q931_msg=5;
Action=GopStop; For=q931_leg; q931_msg=90;

H225 RAS

 Action=PduDef; Name=ras_pdu; Proto=h225.RasMessage; Transport=udp/ip; addr=ip.addr; ras_sn=h225.RequestSeqNum; ras_msg=h225.RasMessage;
Action=PduExtra; For=ras_pdu; guid=h225.guid;

Action=GopDef; Name=ras_leg; On=ras_pdu; addr; addr; ras_sn;
Action=GopStart; For=ras_leg; ras_msg|0|3|6|9|12|15|18|21|26|30;
Action=GopStop; For=ras_leg; ras_msg|1|2|4|5|7|8|10|11|13|14|16|17|19|20|22|24|27|28|29|31;
Action=GopExtra; For=ras_leg; guid;

SIP

 Action=PduDef; Proto=sip_pdu; Transport=tcp/ip; addr=ip.addr; port=tcp.port; sip_method=sip.Method; sip_callid=sip.Call-ID; calling=sdp.owner.username;

Action=GopDef; Name=sip_leg; On=sip_pdu; addr; addr; port; port;
Action=GopStart; For=sip; sip_method=INVITE;
Action=GopStop; For=sip; sip_method=BYE;

MEGACO

 Will create a GOP out of every transaction.

To "tie" them to your call’s GoG use: Action=GogKey; Name=your_call; On=mgc_tr;
addr!mgc_addr; megaco_ctx;

 Action=PduDef; Name=mgc_pdu; Proto=megaco; Transport=ip; addr=ip.addr; megaco_ctx=megaco.context; megaco_trx=megaco.transid; megaco_msg=megaco.transaction; term=megaco.termid;

Action=GopDef; Name=mgc_tr; On=mgc_pdu; addr; addr; megaco_trx;
Action=GopStart; For=mgc_tr; megaco_msg|Request|Notify;
Action=GopStop; For=mgc_tr; megaco_msg=Reply;
Action=GopExtra; For=mgc_tr; term^DS1; megaco_ctx!Choose one;

MATE’s reference manual

Attribute Value Pairs (AVP)

 MATE uses AVPs for almost everything: to keep the data it has extracted from the
frames' trees as well as to keep the elements of the configuration.

These "pairs" (actually tuples) are made of a name, a value and, in case of
configuration AVPs, an operator. Names and values are strings. AVPs with
operators other than '=' are used only in the configuration and are used for
matching AVPs of PDUs, GOPs and GOGs in the analysis phase.

Name

 The name is a string used to refer to a type of AVP. Two attributes won’t
match unless their names are identical. Capitalized names are reserved for
keywords (you can use them for your elements if you want but I think it’s not
the case). MATE attribute names can be used in Wireshark’s display filters the
same way like names of protocol fields provided by dissectors, but they are not
just references to (or aliases of) protocol fields.

Value

 The value is a string. It is either set in the configuration (for configuration
AVPs) or by MATE while extracting interesting fields from a dissection tree
and/or manipulating them later. The values extracted from fields use the same
representation as they do in filter strings.

AVP Operators (=,!,{},^,$,~,<,>,?)

 Currently only match operators are defined (there are plans to (re)add transform
attributes but some internal issues have to be solved before that). The match
operations are always performed between two operands: the value of an AVP stated
in the configuration and the value of an AVP (or several AVPs with the same name)
extracted from packet data (called "data AVPs"). It is not possible to match
data AVPs to each other.

The defined match operators are:

	
Equal = test for equality, that is: either the value strings are identical
or the match will fail.

	
Not Equal ! will match only if the value strings aren’t equal.

	
One Of {} will match if one of the value strings listed is equal to the
data AVP’s string. Items inside the list’s curly braces are
separated with the | character.

	
Starts With ^ will match if the configuration value string matches the
first characters of the data AVP’s value string.

	
Ends With $ will match if the configuration value string matches the
last characters of the data AVP’s value string.

	
Contains ~ will match if the configuration value string matches a
substring of the characters of the data AVP’s value string.

	
Lower Than < will match if the data AVP’s value string is semantically
lower than the configuration value string.

	
Higher Than > will match if the data AVP’s value string is semantically
higher than the configuration value string.

	
Exists ? (can be omitted) will match if the AVP name matches, regardless
what the value string is.

Equal AVP Operator (=)

 This operator tests whether the values of the operator and the operand AVP are
equal.

	
Example

	
attrib=aaa matches attrib=aaa

attrib=aaa does not match attrib=bbb

Not equal AVP operator (!)

 This operator matches if the value strings of two AVPs are not equal.

	
Example

	
attrib=aaa matches attrib!bbb

attrib=aaa does not match attrib!aaa

"One of" AVP operator ({})

 The "one of" operator matches if the data AVP value is equal to one of the
values listed in the "one of" AVP.

	
Example

	
attrib=1 matches attrib{1|2|3}

attrib=2 matches attrib{1|2|3}

attrib=4 does not match attrib{1|2|3}

"Starts with" AVP operator (^)

 The "starts with" operator matches if the first characters of the data AVP
value are identical to the configuration AVP value.

	
Example

	
attrib=abcd matches attrib^abc

attrib=abc matches attrib^abc

attrib=ab does not match attrib^abc

attrib=abcd does not match attrib^bcd

attrib=abc does not match attrib^abcd

"Ends with" operator ($)

 The ends with operator will match if the last bytes of the data AVP value are
equal to the configuration AVP value.

	
Example

	
attrib=wxyz matches attrib$xyz

attrib=yz does not match attrib$xyz

attrib=abc…​wxyz does not match attrib$abc

Contains operator (~)

 The "contains" operator will match if the data AVP value contains a string
identical to the configuration AVP value.

	
Example

	
attrib=abcde matches attrib~bcd

attrib=abcde matches attrib~abc

attrib=abcde matches attrib~cde

attrib=abcde does not match attrib~xyz

"Lower than" operator (<)

 The "lower than" operator will match if the data AVP value is semantically lower
than the configuration AVP value.

	
Example

	
attrib=abc matches attrib<bcd

attrib=1 matches attrib<2

but beware: attrib=10 does not match attrib<9

attrib=bcd does not match attrib<abc

attrib=bcd does not match attrib<bcd

BUGS

It should check whether the values are numbers and compare them numerically

"Higher than" operator (>)

 The "higher than" operator will match if the data AVP value is semantically
higher than the configuration AVP value.

Examples

attrib=bcd matches attrib>abc

attrib=3 matches attrib>2

but beware: attrib=9 does not match attrib>10

attrib=abc does not match attrib>bcd

attrib=abc does not match attrib>abc

BUGS

It should check whether the values are numbers and compare them numerically

Exists operator (?)

 The exists operator will always match as far as the two operands have the same
name.

Examples

attrib=abc matches attrib?

attrib=abc matches attrib (this is just an alternative notation of the previous example)

obviously attrib=abc does not match other_attrib?

Attribute Value Pair List (AVPL)

 PDUs, GOPs and GOGs use an AVPL to contain the tracing information. An AVPL is
an unsorted set of AVPs that can be matched against other AVPLs.

Operations between AVPLs (Match)

 There are three types of match operations that can be performed between AVPLs.
The PDU’s/GOP’s/GOG’s AVPL will be always one of the operands; the AVPL operator
(match type) and the second operand AVPL will always come from the
configuration.
Note that a diverse AVP match operator may be specified for each AVP in the
configuration AVPL.

An AVPL match operation returns a result AVPL. In Transforms, the
result AVPL may be replaced by another AVPL. The replacement means that the
existing data AVPs are dropped and the replacement AVPL from the
configuration is Merged to the data AVPL of the
PDU/GOP/GOG.

	
Loose Match: Will match if at least one of the AVPs of the two
operand AVPLs match. If it matches, it returns a result AVPL containing all AVPs
from the data AVPL that did match the configuration’s AVPs.

	
"Every" Match: Will match if none of the AVPs of the configuration
AVPL fails to match an AVP in the data AVPL, even if not all of the
configuration AVPs have a match. If it matches, it returns a result AVPL
containing all AVPs from the data AVPL that did match an AVP in the
configuration AVPL.

	
Strict Match: Will match if and only if each of the AVPs in the
configuration AVPL has at least one match in the data AVPL. If it matches, it
returns a result AVPL containing those AVPs from the data AVPL that matched.

Loose Match

 A loose match between AVPLs succeeds if at least one of the data AVPs matches at
least one of the configuration AVPs. Its result AVPL contains all the data AVPs
that matched.

Loose matches are used in Extra operations against the PDU's AVPL to
merge the result into GOP's AVPL, and against GOP's AVPL to
merge the result into GOG's AVPL. They may also be used in
Criteria and Transforms.

As of current (2.0.1), Loose Match does not work as described here, see
issue 12184. Only use
in Transforms and Criteria is effectively affected by the bug.

Loose Match Examples

(attr_a=aaa, attr_b=bbb, attr_c=xxx) Match Loose (attr_a?, attr_c?) =⇒ (attr_a=aaa, attr_c=xxx)

(attr_a=aaa, attr_b=bbb, attr_c=xxx) Match Loose (attr_a?, attr_c=ccc) =⇒ (attr_a=aaa)

(attr_a=aaa, attr_b=bbb, attr_c=xxx) Match Loose (attr_a=xxx; attr_c=ccc) =⇒ No Match!

Every Match

 An "every" match between AVPLs succeeds if none of the configuration’s AVPs that
have a counterpart in the data AVPL fails to match. Its result AVPL contains all
the data AVPs that matched.

These may only be used in Criteria and Transforms.

As of current (2.0.1), Loose Match does not work as described here, see
issue 12184.

"Every" Match Examples

(attr_a=aaa, attr_b=bbb, attr_c=xxx) Match Every (attr_a?, attr_c?) =⇒ (attr_a=aaa, attr_c=xxx)

(attr_a=aaa, attr_b=bbb, attr_c=xxx) Match Every (attr_a?, attr_c?, attr_d=ddd) =⇒ (attr_a=aaa, attr_c=xxx)

(attr_a=aaa, attr_b=bbb, attr_c=xxx) Match Every (attr_a?, attr_c=ccc) =⇒ No Match!

(attr_a=aaa; attr_b=bbb; attr_c=xxx) Match Every (attr_a=xxx, attr_c=ccc) =⇒ No Match!

Strict Match

 A Strict match between AVPLs succeeds if and only if every AVP in the
configuration AVPL has at least one counterpart in the data AVPL and none of the
AVP matches fails. The result AVPL contains all the data AVPs that matched.

These are used between GOP keys (key AVPLs) and PDU AVPLs. They may also be used
in Criteria and Transforms.

Examples

(attr_a=aaa, attr_b=bbb, attr_c=xxx) Match Strict (attr_a?, attr_c=xxx) =⇒ (attr_a=aaa, attr_c=xxx)

(attr_a=aaa, attr_b=bbb, attr_c=xxx, attr_c=yyy) Match Strict (attr_a?, attr_c?) =⇒ (attr_a=aaa, attr_c=xxx, attr_c=yyy)

(attr_a=aaa, attr_b=bbb, attr_c=xxx) Match Strict (attr_a?, attr_c=ccc) =⇒ No Match!

(attr_a=aaa, attr_b=bbb, attr_c=xxx) Match Strict (attr_a?, attr_c?, attr_d?) =⇒ No Match!

AVPL Merge

 An AVPL may be merged into another one. That would add to the latter every AVP
from the former that does not already exist there.

This operation is done

	
between the result of a key match and the GOP’s or GOG’s AVPL,

	
between the result of an Extra match and the GOP’s or GOG’s AVPL,

	
between the result of a Transform match and PDU’s/GOP’s AVPL. If
the operation specified by the Match clause is Replace, the result AVPL of the
match is removed from the item’s AVPL before the modify_avpl is merged into it.

Examples

(attr_a=aaa, attr_b=bbb) "merge" (attr_a=aaa, attr_c=xxx) former becomes (attr_a=aaa, attr_b=bbb, attr_c=xxx)

Can’t have multiple "attr_a" with same value "aaa"

(attr_a=aaa, attr_b=bbb) "merge" (attr_a=aaa, attr_a=xxx) former becomes (attr_a=aaa, attr_a=xxx, attr_b=bbb)

Multiple "attr_a" with different values "aaa" and "xxx"

(attr_a=aaa, attr_b=bbb) "merge" (attr_c=xxx, attr_d=ddd) former becomes (attr_a=aaa, attr_b=bbb, attr_c=xxx, attr_d=ddd)

All AVP names are unique so resulting AVPL contains all AVPs from both AVPLs

Configuration Reference (mate.config)

PDU declaration block

 The following configuration AVPLs deal with PDU creation and data extraction.

Pdu declaration block header

 In each frame of the capture, MATE will look for source proto_name's PDUs in
the order in which the declarations appear in its configuration and will create
PDUs of every type it can from that frame, unless specifically instructed that
some PDU type is the last one to be looked for in the frame. If told so for a
given type, MATE will extract all PDUs of that type and the previously declared
types it finds in the frame but not those declared later.

The complete declaration of a Pdu looks as below; the mandatory order of the
diverse clauses is as shown.

 Pdu name Proto proto_name Transport {proto1[/proto2/proto3[/...]|mate}; {
 Payload proto; //optional, no default value
 Extract attribute From proto.field ; //may occur multiple times, at least once
 Transform transform1[, transform2[, ...]]; //optional
 Criteria {Accept|Reject} {Strict|Every|Loose} match_avpl; //optional
 DropUnassigned {TRUE|FALSE}; //optional, default=FALSE
 DiscardPduData {TRUE|FALSE}; //optional, default=FALSE
 LastPdu {TRUE|FALSE}; //optional, default=FALSE
};

Pdu name

 The name is a mandatory attribute of a Pdu declaration. It is chosen
arbitrarily, except that each name may only be used once in MATE’s
configuration, regardless the class of an item it is used for. The name is
used to distinguish between different types of PDUs, GOPs, and GOGs. The name
is also used as part of the filterable fields' names related to this type of PDU
which MATE creates.

However, several Pdu declarations may share the same name. In such case, all
of them are created from each source PDU matching their Proto, Transport,
and Payload clauses, while the bodies of their declarations may be totally
different from each other. Together with the Accept (or Reject) clauses,
this feature is useful when it is necessary to build the PDU’s AVPL from
different sets of source fields depending on contents (or mere presence) of
other source fields.

Proto and Transport clauses

 Every instance of the protocol proto_name PDU in a frame will generate one
PDU with the AVPs extracted from fields that are in the proto_name's range
and/or the ranges of underlying protocols specified by the Transport list.
It is a mandatory attribute of a Pdu declaration. The proto_name is the name
of the protocol as used in Wireshark display filter.

The PDU’s Proto, and its Transport list of protocols separated by / tell
MATE which fields of a frame can get into the PDU’s AVPL. In order that MATE
would extract an attribute from a frame’s protocol tree, the area representing
the field in the hex display of the frame must be within the area of either the
Proto or its relative Transports. Transports are chosen moving backwards
from the protocol area, in the order they are given.

Proto http Transport tcp/ip does what you’d expect it to - it selects the
nearest tcp range that precedes the current http range, and the nearest ip range
that precedes that tcp range. If there is another ip range before the nearest
one (e.g., in case of IP tunneling), that one is not going to be selected.
Transport tcp/ip/ip that "logically" should select the encapsulating IP header
too doesn’t work so far.

Once we’ve selected the Proto and Transport ranges, MATE will fetch those
protocol fields belonging to them whose extraction is declared using the
Extract clauses for the PDU type. The Transport list is also mandatory,
if you actually don’t want to use any transport protocol, use Transport mate.
(This didn’t work until 0.10.9).

Payload clause

 Other than the PDU’s Proto and its Transport protocols, there is also a
Payload attribute to tell MATE from which ranges of Proto's payload to
extract fields of a frame into the PDU. In order to extract an attribute from a
frame’s tree the highlighted area of the field in the hex display must be within
the area of the Proto's relative payload(s). Payloads are chosen moving
forward from the protocol area, in the order they are given.
Proto http Transport tcp/ip Payload mmse will select the first mmse range
after the current http range. Once we’ve selected the Payload ranges, MATE
will fetch those protocol fields belonging to them whose extraction is declared
using the Extract clauses for the PDU type.

Extract clause

 Each Extract clause tells MATE which protocol field value to extract as an AVP
value and what string to use as the AVP name. The protocol fields are referred
to using the names used in Wireshark display filters. If there is more than one
such protocol field in the frame, each instance that fulfills the criteria
stated above is extracted into its own AVP. The AVP names may be chosen
arbitrarily, but to be able to match values originally coming from different
PDUs (e.g., hostname from DNS query and a hostname from HTTP GET request) later
in the analysis, identical AVP names must be assigned to them and the dissectors
must provide the field values in identical format (which is not always the case).

Transform clause

 The Transform clause specifies a list of previously declared Transforms to
be performed on the PDU’s AVPL after all protocol fields have been extracted to
it. The list is always executed completely, left to right. On the contrary, the
list of Match clauses inside each individual Transform is executed only until
the first match succeeds.

Criteria clause

 This clause tells MATE whether to use the PDU for analysis. It specifies a match
AVPL, an AVPL Match type (Strict, Every, or Loose) and the action to be
performed (Accept or Reject) if the match succeeds. Once every attribute has
been extracted and eventual transform list has been executed, and if the
Criteria clause is present, the PDU’s AVPL is matched against the match AVPL;
if the match succeeds, the action specified is executed, i.e., the PDU is
accepted or rejected. The default behaviors used if the respective keywords are
omitted are Strict and Accept. Accordingly, if the clause is omitted, all
PDUs are accepted.

DropUnassigned clause

 If set to TRUE, MATE will destroy the PDU if it cannot assign it to a GOP.
If set to FALSE (the default if not given), MATE will keep them.

DiscardPduData clause

 If set to TRUE, MATE will delete the PDU’s AVPL once it has analyzed it and
eventually extracted some AVPs from it into the GOP’s AVPL. This is useful to
save memory (of which MATE uses a lot). If set to FALSE (the default if not
given), MATE will keep the PDU attributes.

LastPdu clause

 If set to FALSE (the default if not given), MATE will continue to look for
PDUs of other types in the frame. If set to TRUE, it will not try to create
PDUs of other types from the current frame, yet it will continue to try for the
current type.

GOP declaration block

Gop declaration block header

 Declares a Gop type and its candidate key.

 Gop name On pduname Match key {
 Start match_avpl; // optional
 Stop match_avpl; // optional
 Extra match_avpl; // optional
 Transform transform_list; // optional
 Expiration time; // optional
 IdleTimeout time; // optional
 Lifetime time; // optional
 DropUnassigned [TRUE|FALSE]; //optional
 ShowTree [NoTree|PduTree|FrameTree|BasicTree]; //optional
 ShowTimes [TRUE|FALSE]; //optional, default TRUE
};

Gop name

 The name is a mandatory attribute of a Gop declaration. It is chosen
arbitrarily, except that each name may only be used once in MATE’s
configuration, regardless the class of an item it is used for. The name is
used to distinguish between different types of PDUs, GOPs, and GOGs. The name
is also used as part of the filterable fields' names related to this type of
GOP which MATE creates.

On clause

 The name of PDUs which this type of GOP is supposed to be grouping. It is
mandatory.

Match clause

 Defines what AVPs form up the key part of the GOP’s AVPL (the GOP’s key AVPL
or simply the GOP’s key). All PDUs matching the key AVPL of an active GOP
are assigned to that GOP; a PDU which contains the AVPs whose attribute names
are listed in the GOP’s key AVPL, but they do not strictly match any active
GOP’s key AVPL, will create a new GOP (unless a Start clause is given).
When a GOP is created, the elements of its key AVPL are copied from the creating
PDU.

Start clause

 If given, it tells MATE what match_avpl must a PDU’s AVPL match, in addition to
matching the GOP’s key, in order to start a GOP. If not given, any PDU whose
AVPL matches the GOP’s key AVPL will act as a start for a GOP. The PDU’s AVPs
matching the match_avpl are not automatically copied into the GOP’s AVPL.

Stop clause

 If given, it tells MATE what match_avpl must a PDU’s AVPL match, in addition to
matching the GOP’s key, in order to stop a GOP. If omitted, the GOP is
"auto-stopped" - that is, the GOP is marked as stopped as soon as it is created.
The PDU’s AVPs matching the match_avpl are not automatically copied into the
GOP’s AVPL.

Extra clause

 If given, tells MATE which AVPs from the PDU’s AVPL are to be copied into the
GOP’s AVPL in addition to the GOP’s key.

Transform clause

 The Transform clause specifies a list of previously declared Transforms to
be performed on the GOP’s AVPL after the AVPs from each new PDU, specified by
the key AVPL and the Extra clause’s match_avpl, have been merged into it.
The list is always executed completely, left to right. On the contrary, the list
of Match clauses inside each individual Transform is executed only until
the first match succeeds.

Expiration clause

 A (floating) number of seconds after a GOP is Stop ped during which further
PDUs matching the Stop ped GOP’s key but not the Start condition will still
be assigned to that GOP. The default value of zero has an actual meaning of
infinity, as it disables this timer, so all PDUs matching the Stop ped GOP’s
key will be assigned to that GOP unless they match the Start condition.

IdleTimeout clause

 A (floating) number of seconds elapsed from the last PDU assigned to the GOP
after which the GOP will be considered released. The default value of zero has
an actual meaning of infinity, as it disables this timer, so the GOP won’t be
released even if no PDUs arrive - unless the Lifetime timer expires.

Lifetime clause

 A (floating) of seconds after the GOP Start after which the GOP will be
considered released regardless anything else. The default value of zero has an
actual meaning of infinity.

DropUnassigned clause

 Whether or not a GOP that has not being assigned to any GOG should be discarded.
If TRUE, the GOP is discarded right after creation. If FALSE, the default,
the unassigned GOP is kept. Setting it to TRUE helps save memory and speed up
filtering.

TreeMode clause

 Controls the display of PDUs subtree of the GOP:

	
NoTree: completely suppresses showing the tree

	
PduTree: the tree is shown and shows the PDUs by PDU Id

	
FrameTree: the tree is shown and shows the PDUs by the frame number in which
they are

	
BasicTree: needs investigation

ShowTimes clause

 Whether or not to show the times subtree of the GOP. If TRUE, the default,
the subtree with the timers is added to the GOP’s tree. If FALSE, the subtree
is suppressed.

GOG declaration block

Gog declaration block header

 Declares a Gog type and its candidate key.

 Gog name {
 Member gopname (key); // mandatory, at least one
 Extra match_avpl; // optional
 Transform transform_list; // optional
 Expiration time; // optional, default 2.0
 GopTree [NoTree|PduTree|FrameTree|BasicTree]; // optional
 ShowTimes [TRUE|FALSE]; // optional, default TRUE
};

Gog name

 The name is a mandatory attribute of a Gog declaration. It is chosen
arbitrarily, except that each name may only be used once in MATE’s
configuration, regardless the class of an item it is used for. The name is
used to distinguish between different types of PDUs, GOPs, and GOGs. The name
is also used as part of the filterable fields' names related to this type of
GOG which MATE creates.

Member clause

 Defines the key AVPL for the GOG individually for each GOP type gopname.
All gopname type GOPs whose key AVPL matches the corresponding key AVPL
of an active GOG are assigned to that GOG; a GOP which contains the AVPs whose
attribute names are listed in the GOG’s corresponding key AVPL, but they do
not strictly match any active GOG’s key AVPL, will create a new GOG. When a
GOG is created, the elements of its key AVPL are copied from the creating GOP.

Although the key AVPLs are specified separately for each of the Member
gopnames, in most cases they are identical, as the very purpose of a GOG is
to group together GOPs made of PDUs of different types.

Extra clause

 If given, tells MATE which AVPs from any of the GOP’s AVPL are to be copied
into the GOG’s AVPL in addition to the GOG’s key.

Expiration clause

 A (floating) number of seconds after all the GOPs assigned to a GOG have been
released during which new GOPs matching any of the session keys should still be
assigned to the existing GOG instead of creating a new one. Its value can range
from 0.0 to infinite. Defaults to 2.0 seconds.

Transform clause

 The Transform clause specifies a list of previously declared Transforms to
be performed on the GOG’s AVPL after the AVPs from each new GOP, specified by
the key AVPL and the Extra clause’s match_avpl, have been merged into it.
The list is always executed completely, left to right. On the contrary, the list
of Match clauses inside each individual Transform is executed only until
the first match succeeds.

TreeMode clause

 Controls the display of GOPs subtree of the GOG:

	
NoTree: completely suppresses showing the tree

	
BasicTree: needs investigation

	
FullTree: needs investigation

ShowTimes clause

 Whether or not to show the times subtree of the GOG. If TRUE, the default,
the subtree with the timers is added to the GOG’s tree. If FALSE, the subtree
is suppressed.

Transform declaration block

 A Transform is a sequence of Match rules optionally followed by an instruction
how to modify the match result using an additional AVPL. Such modification may
be an Insert (merge) or a Replace. The syntax is as follows:

 Transform name {
 Match [Strict|Every|Loose] match_avpl [[Insert|Replace] modify_avpl] ; // may occur multiple times, at least once
};

For examples of Transforms, check the Manual page.

TODO: migrate the examples here?

The list of Match rules inside a Transform is processed top to bottom;
the processing ends as soon as either a Match rule succeeds or all have been
tried in vain.

Transforms can be used as helpers to manipulate an item’s AVPL before the item
is processed further. An item declaration may contain a Transform clause
indicating a list of previously declared Transforms. Regardless whether the
individual transforms succeed or fail, the list is always executed completely
and in the order given, i.e., left to right.

In MATE configuration file, a Transform must be declared before declaring any
item which uses it.

Settings configuration AVPL

The Settings parameters have been moved to other configuration parameters
or deprecated. Leave for now until rest of document is updated for current syntax.

The Settings config element is used to pass to MATE various operational
parameters. the possible parameters are

GogExpiration

 How long in seconds after all the GOPs assigned to a GOG have been released new
GOPs matching any of the session keys should create a new GOG instead of being
assigned to the previous one. Its value can range from 0.0 to infinite.
Defaults to 2.0 seconds.

DiscardPduData

 Whether or not the AVPL of every PDU should be deleted after it was being
processed (saves memory). It can be either TRUE or FALSE. Defaults to TRUE.
Setting it to FALSE can save you from a headache if your config does not work.

DiscardUnassignedPdu

 Whether PDUs should be deleted if they are not assigned to any GOP. It can be
either TRUE or FALSE. Defaults to FALSE. Set it to TRUE to save memory
if unassigned PDUs are useless.

DiscardUnassignedGop

 Whether GOPs should be deleted if they are not assigned to any session. It can
be either TRUE or FALSE. Defaults to FALSE. Setting it to TRUE saves
memory.

ShowPduTree

ShowGopTimes

Debugging Stuff

 The following settings are used to debug MATE and its configuration. All levels
are integers ranging from 0 (print only errors) to 9 (flood me with junk),
defaulting to 0.

Debug declaration block header

 Debug {
 Filename "path/name"; //optional, no default value
 Level [0-9]; //optional, generic debug level
 Pdu Level [0-9]; //optional, specific debug level for Pdu handling
 Gop Level [0-9]; //optional, specific debug level for Gop handling
 Gog Level [0-9]; //optional, specific debug level for Gog handling
};

Filename clause

 The {{{path/name}}} is a full path to the file to which debug output is to be
written. Non-existent file will be created, existing file will be overwritten
at each opening of a capture file. If the statement is missing, debug messages
are written to console, which means they are invisible on Windows.

Level clause

 Sets the level of debugging for generic debug messages. It is an integer
ranging from 0 (print only errors) to 9 (flood me with junk).

Pdu Level clause

 Sets the level of debugging for messages regarding PDU creation. It is an
integer ranging from 0 (print only errors) to 9 (flood me with junk).

Gop Level clause

 Sets the level of debugging for messages regarding PDU analysis (that is how do
they fit into ?GOPs). It is an integer ranging from 0 (print only errors) to 9
(flood me with junk).

Gog Level clause

 Sets the level of debugging for messages regarding GOP analysis (that is how do
they fit into ?GOGs). It is an integer ranging from 0 (print only errors) to 9
(flood me with junk).

Settings Example

 Action=Settings; SessionExpiration=3.5; DiscardPduData=FALSE;

Action=Include

 Will include a file to the configuration.

 Action=Include; {Filename=filename;|Lib=libname;}

Filename

 The filename of the file to include. If it does not begin with '/' it will look
for the file in the current path.

Lib

 The name of the lib config to include. will look for libname.mate in
wiresharks_dir/matelib.

Include Example

 Action=Include; Filename=rtsp.mate;

This will include the file called "rtsp.mate" into the current config.

Appendix A: Wireshark Messages

 Wireshark provides you with additional information generated out of the plain
packet data or it may need to indicate dissection problems. Messages generated
by Wireshark are usually placed in square brackets (“[]”).

Packet List Messages

 These messages might appear in the packet list.

[Malformed Packet]

 Malformed packet means that the protocol dissector can’t dissect the contents of
the packet any further. There can be various reasons:

	
Wrong dissector: Wireshark erroneously has chosen the wrong protocol
dissector for this packet. This will happen e.g., if you are using a protocol
not on its well known TCP or UDP port. You may try Analyze|Decode As to
circumvent this problem.

	
Packet not reassembled: The packet is longer than a single frame and it is
not reassembled, see Packet Reassembly for further details.

	
Packet is malformed: The packet is actually wrong (malformed), meaning
that a part of the packet is just not as expected (not following the protocol
specifications).

	
Dissector is buggy: The corresponding protocol dissector is simply buggy
or still incomplete.

Any of the above is possible. You’ll have to look into the specific situation to
determine the reason. You could disable the dissector by disabling the protocol
on the Analyze menu and check how Wireshark displays the packet then. You could
(if it’s TCP) enable reassembly for TCP and the specific dissector (if possible)
in the Edit|Preferences menu. You could check the packet contents yourself by
reading the packet bytes and comparing it to the protocol specification. This
could reveal a dissector bug. Or you could find out that the packet is indeed
wrong.

[Packet size limited during capture]

 The packet size was limited during capture, see “Limit each packet to n bytes”
at the The “Capture Options” Dialog Box. While dissecting, the current protocol dissector
was simply running out of packet bytes and had to give up. There’s nothing else
you can do now, except to repeat the whole capture process again with a higher
(or no) packet size limitation.

Packet Details Messages

 These messages might appear in the packet details.

[Response in frame: 123]

 The current packet is the request of a detected request/response pair. You can
directly jump to the corresponding response packet by double-clicking on
the message.

[Request in frame: 123]

 Same as “Response in frame: 123” above, but the other way round.

[Time from request: 0.123 seconds]

 The time between the request and the response packets.

[Stream setup by PROTOCOL (frame 123)]

 The session control protocol (SDP, H225, etc.) message which signaled the
creation of this session. You can directly jump to the corresponding packet
by double-clicking on this message.

(None)

Appendix B: Files and Folders

Capture Files

 To understand which information will remain available after the captured packets
are saved to a capture file, it’s helpful to know a bit about the capture file
contents.

Wireshark uses the
pcapng file
format as the default format to save captured packets. It is very flexible
but other tools may not support it.

Wireshark also supports the
libpcap file
format. This is a much simpler format and is well established. However, it has
some drawbacks: it’s not extensible and lacks some information that would be
really helpful (e.g., being able to add a comment to a packet such as “the
problems start here” would be really nice).

In addition to the libpcap format, Wireshark supports several different capture
file formats. However, the problems described above also applies for these
formats.

Libpcap File Contents

 At the start of each libpcap capture file some basic information is stored like
a magic number to identify the libpcap file format. The most interesting
information of this file start is the link layer type (Ethernet, 802.11,
MPLS, etc.).

The following data is saved for each packet:

	
The timestamp with millisecond resolution

	
The packet length as it was “on the wire”

	
The packet length as it’s saved in the file

	
The packet’s raw bytes

A detailed description of the libpcap file format can be found at
https://wiki.wireshark.org/Development/LibpcapFileFormat

Not Saved in the Capture File

 You should also know the things that are not saved in capture files:

	
Current selections (selected packet, …​)

	
Name resolution information. See Name Resolution for details
Pcapng files can optionally save name resolution information. Libpcap files
can’t. Other file formats have varying levels of support.

	
The number of packets dropped while capturing

	
Packet marks set with “Edit/Mark Packet”

	
Time references set with “Edit/Time Reference”

	
The current display filter

Configuration File and Plugin Folders

 To match the different policies for Unix-like systems and Windows, and
different policies used on different Unix-like systems, the folders
containing configuration files and plugins are different on different
platforms. We indicate the location of the top-level folders under
which configuration files and plugins are stored here, giving them
placeholder names independent of their actual location, and use those
names later when giving the location of the folders for configuration
files and plugins.

A list of the folders Wireshark actually uses can be found under the Folders
tab in the dialog box shown when you select About Wireshark from the Help
menu.

Folders on Windows

 %APPDATA% is the personal application data folder, e.g.:
C:\Users\username\AppData\Roaming\Wireshark (details can be
found at: Windows profiles).

WIRESHARK is the Wireshark program folder, e.g.: C:\Program
Files\Wireshark.

Folders on Unix-like systems

 $XDG_CONFIG_HOME is the folder for user-specific configuration files.
It’s usually $HOME/.config, where $HOME is the user’s home folder, which
is usually something such as /home/username, or
/Users/username on macOS.

If you are using macOS and you are running a copy of Wireshark
installed as an application bundle, APPDIR is the top-level directory
of the Wireshark application bundle, which will typically be
/Applications/Wireshark.app. Otherwise, INSTALLDIR is the top-level
directory under which reside the subdirectories in which components of
Wireshark are installed. This will typically be /usr if Wireshark is
bundled with the system (for example, provided as a package with a Linux
distribution) and /usr/local if, for example, you’ve built Wireshark
from source and installed it.

Configuration Files

 Wireshark uses a number of configuration files while it is running. Some of these
reside in the personal configuration folder and are used to maintain information
between runs of Wireshark, while some of them are maintained in system areas.

The content format of the configuration files is the same on all platforms.

On Windows:

	
The personal configuration folder for Wireshark is the
Wireshark sub-folder of that folder, i.e., %APPDATA%\Wireshark.

	
The global configuration folder for Wireshark is the Wireshark program
folder and is also used as the system configuration folder.

On Unix-like systems:

	
The personal configuration folder is
$XDG_CONFIG_HOME/wireshark. For backwards compatibility with
Wireshark before 2.2, if $XDG_CONFIG_HOME/wireshark does not
exist and $HOME/.wireshark is present, then the latter will be used.

	
If you are using macOS and you are running a copy of Wireshark
installed as an application bundle, the global configuration folder is
APPDIR/Contents/Resources/share/wireshark. Otherwise, the
global configuration folder is INSTALLDIR/share/wireshark.

	
The /etc folder is the system configuration folder. The folder
actually used on your system may vary, maybe something like:
/usr/local/etc.

Table 29. Configuration files overview

	File/Folder
	Description

	cfilters

	Capture filters.

	colorfilters

	Coloring rules.

	dfilter_buttons

	Display filter buttons.

	dfilters

	Display filters.

	disabled_protos

	Disabled protocols.

	dmacros

	Display filter macros.

	ethers

	Ethernet name resolution.

	hosts

	IPv4 and IPv6 name resolution.

	ipxnets

	IPX name resolution.

	manuf

	Ethernet name resolution.

	preferences

	Settings from the Preferences dialog box.

	recent

	Per-profile GUI settings.

	recent_common

	Common GUI settings.

	services

	Network services.

	ss7pcs

	SS7 point code resolution.

	subnets

	IPv4 subnet name resolution.

	vlans

	VLAN ID name resolution.

	wka

	Well-known MAC addresses.

File contents

	
cfilters

	
This file contains all the capture filters that you have defined and saved. It
consists of one or more lines, where each line has the following format:

 "<filter name>" <filter string>

At program start, if there is a cfilters file in the personal
configuration folder, it is read. If there isn’t a cfilters file in
the personal configuration folder, then, if there is a cfilters file
in the global configuration folder, it is read.

When you press the Save button in the “Capture Filters” dialog box,
all the current capture filters are written to the personal capture
filters file.

	
colorfilters

	
This file contains all the color filters that you have defined and saved. It
consists of one or more lines, where each line has the following format:

 @<filter name>@<filter string>@[<bg RGB(16-bit)>][<fg RGB(16-bit)>]

At program start, if there is a colorfilters file in the personal
configuration folder, it is read. If there isn’t a colorfilters file
in the personal configuration folder, then, if there is a colorfilters
file in the global configuration folder, it is read.

When you press the Save button in the “Coloring Rules” dialog box,
all the current color filters are written to the personal color filters
file.

	
dfilter_buttons

	
This file contains all the display filter buttons that you have defined and
saved. It consists of one or more lines, where each line has the following
format:

 "TRUE/FALSE","<button label>","<filter string>","<comment string>"

where the first field is TRUE if the button is enabled (shown).

At program start, if there is a dfilter_buttons file in the personal
configuration folder, it is read. If there isn’t a dfilter_buttons file
in the personal configuration folder, then, if there is a dfilter_buttons
file in the global configuration folder, it is read.

When you save any changes to the filter buttons, all the current display
filter buttons are written to the personal display filter buttons file.

	
dfilters

	
This file contains all the display filters that you have defined and saved. It
consists of one or more lines, where each line has the following format:

 "<filter name>" <filter string>

At program start, if there is a dfilters file in the personal
configuration folder, it is read. If there isn’t a dfilters file in
the personal configuration folder, then, if there is a dfilters file
in the global configuration folder, it is read.

When you press the Save button in the “Display Filters” dialog box,
all the current display filters are written to the personal display
filters file.

	
disabled_protos

	
Each line in this file specifies a disabled protocol name. The following are
some examples:

 tcp
udp

At program start, if there is a disabled_protos file in the global
configuration folder, it is read first. Then, if there is a
disabled_protos file in the personal configuration folder, that is
read; if there is an entry for a protocol set in both files, the setting
in the personal disabled protocols file overrides the setting in the
global disabled protocols file.

When you press the Save button in the “Enabled Protocols” dialog box,
the current set of disabled protocols is written to the personal
disabled protocols file.

	
dmacros

	
This file contains all the display filter macros that you have defined and saved.
It consists of one or more lines, where each line has the following format:

 "<macro name>" <macro expression>

At program start, if there is a dmacros file in the personal
configuration folder, it is read. If there isn’t a dmacros file
in the personal configuration folder, then, if there is a dmacros
file in the global configuration folder, it is read.

In versions of Wireshark prior to 4.4, the display filter macros were
stored in a dfilter_macros file with a somewhat different format,
a UAT. At program start if the dmacros file
is not found a dfilter_macros file is looked for in the personal and
global configuration folders and converted to the new format.

When you press the Save button in the "Display Filter Macros" dialog box,
all the current display filter macros are written to the personal display
filter macros file.

More information about Display Filter Macros is available in
Defining And Saving Filter Macros

	
ethers

	
When Wireshark is trying to translate a hardware MAC or EUI-64 address to
a name, it consults the ethers file in the personal configuration
folder first. If the address is not found in that file, Wireshark
consults the ethers file in the system configuration folder.

This file has a similar format to the /etc/ethers file on some UNIX-like systems.
Each line in these files consists of one hardware address and name separated by
whitespace (tabs or spaces). The hardware addresses are expressed as pairs
of hexadecimal digits separated by colons (:), dashes (-), or periods(.), with
the same separator used in the entire address. A # can be used to indicate
a comment that extends to the rest of the line. NIS lookups, as in some
UNIX-like systems, are not supported. Both 6 byte MAC and 8 byte EUI-64 addresses
are supported. The following are some examples:

 ff-ff-ff-ff-ff-ff Broadcast
c0-00-ff-ff-ff-ff TR_broadcast
00.2b.08.93.4b.a1 Freds_machine
00:00:00:00:00:00:00:00 zb_zero_broadcast

The settings from this file are read in at program start, and reloaded when
opening a new capture file or changing the configuration profile, and never
written by Wireshark.

	
hosts

	
Wireshark uses the entries in the hosts files to translate IPv4 and
IPv6 addresses into names.

At program start, if there is a hosts file in the global configuration
folder, it is read first. Then, if there is a hosts file in the
personal configuration folder, that is read; if there is an entry for a
given IP address in both files, the setting in the personal hosts file
overrides the entry in the global hosts file.

This file has the same format as the usual /etc/hosts file on Unix systems.

An example is:

 # Comments must be prepended by the # sign!
192.168.0.1 homeserver

The settings from this file are read in at program start, and reloaded when
opening a new capture file or changing the configuration profile, and never
written by Wireshark.

	
ipxnets

	
When Wireshark is trying to translate an IPX network number to
a name, it consults the ipxnets file in the personal configuration
folder first. If the address is not found in that file, Wireshark
consults the ipxnets file in the system configuration folder.

An example is:

 C0.A8.2C.00 HR
c0-a8-1c-00 CEO
00:00:BE:EF IT_Server1
110f FileServer3

The settings from this file are read in when an IPX network number is to
be translated to a name, and never written by Wireshark.

	
manuf

	
At program start, if there is a manuf file in the global configuration
folder, it is read first. Then, if there is a manuf file in the personal
configuration folder, that is read; if there is an entry for a given address
prefix in both files, the setting in the personal file overrides the entry
in the global file.

The entries in this file are used to translate MAC address prefixes into short and long manufacturer names.
Each line consists of a MAC address prefix followed by an abbreviated manufacturer name and the full manufacturer name.
Prefixes 24 bits long by default and may be followed by an optional length.
Note that this is not the same format as the ethers file, which does not
allow prefix lengths.

Examples are:

 00:00:01 Xerox Xerox Corporation
00:50:C2:00:30:00/36 Microsof Microsoft

In earlier versions of Wireshark, official information from the IEEE
Registration Authority was distributed in this format as the manuf file
in the global configuration folder. In current versions of Wireshark, this
information is compiled into the program to speed startup, but if a file
is present in the global configuration folder it is still read, and can
be used to supplement or replace the official data just as the personal
file does. The compiled-in information can be written out in this format
as a report with tshark -G manuf.

The settings from this file are read in at program start, and reloaded when
opening a new capture file or changing the configuration profile, and never
written by Wireshark.

	
preferences

	
This file contains your Wireshark preferences, including defaults for capturing
and displaying packets. It is a simple text file containing statements of the
form:

 variable: value

At program start, if there is a preferences file in the global
configuration folder, it is read first. Then, if there is a
preferences file in the personal configuration folder, that is read;
if there is a preference set in both files, the setting in the personal
preferences file overrides the setting in the global preference file.

If you press the Save button in the “Preferences” dialog box, all the
current settings are written to the personal preferences file.

	
recent

	
This file contains GUI settings that are specific to the current profile, such as column widths and toolbar visibility.
It is a simple text file containing statements of the form:

 variable: value

It is read at program start and written when preferences are saved and at program exit.
It is also written and read whenever you switch to a different profile.

	
recent_common

	
This file contains common GUI settings, such as recently opened capture files, recently used filters, and window geometries.
It is a simple text file containing statements of the form:

 variable: value

It is read at program start and written when preferences are saved and at program exit.

	
services

	
Wireshark uses the services files to translate port numbers into names.

At program start, if there is a services file in the global
configuration folder, it is read first. Then, if there is a services
file in the personal configuration folder, that is read; if there is an
entry for a given port number in both files, the setting in the personal
services file overrides the entry in the global services file.
The format is that of the standard services(5) file on UNIX-compatible
systems.

An example is:

 mydns 5045/udp # My own Domain Name Server
mydns 5045/tcp # My own Domain Name Server

In earlier versions of Wireshark, official information from the IANA
Service Name and Transport Protocol Port Number Registry was distributed
in this format as the services file in the global configuration folder.
In current versions of Wireshark, this information is compiled into the
program to speed startup, but if a file is present in the global configuration
folder it is still read, and can be used to supplement or replace the official
data just as the personal file does. The compiled-in information can be
written out in this format as a report with tshark -G services.

The settings from this file are read in at program start, and reloaded when
opening a new capture file or changing the configuration profile, and never
written by Wireshark.

	
ss7pcs

	
Wireshark uses the ss7pcs file to translate SS7 point codes to node names.

At program start, if there is a ss7pcs file in the personal
configuration folder, it is read.

Each line in this file consists of one network indicator followed by a dash followed by a point code in decimal and a node name separated by whitespace or tab.

An example is:

 2-1234 MyPointCode1

The settings from this file are read in at program start, and reloaded when
opening a new capture file opens or changing the configuration profile,
and never written by Wireshark.

	
subnets

	
Wireshark uses the subnets file to translate an IPv4 address into a
subnet name. If no exact match from a hosts file or from DNS is
found, Wireshark will attempt a partial match for the subnet of the
address.

At program start, if there is a subnets file in the personal
configuration folder, it is read first. Then, if there is a subnets
file in the global configuration folder, that is read; if there is a
preference set in both files, the setting in the global preferences file
overrides the setting in the personal preference file.

Each line in one of these files consists of an IPv4 address, a subnet
mask length separated only by a “/” and a name separated by whitespace.
While the address must be a full IPv4 address, any values beyond the
mask length are subsequently ignored.

An example is:

 # Comments must be prepended by the # sign!
192.168.0.0/24 ws_test_network

A partially matched name will be printed as “subnet-name.remaining-address”.
For example, “192.168.0.1” under the subnet above would be printed as
“ws_test_network.1”; if the mask length above had been 16 rather than 24, the
printed address would be “ws_test_network.0.1”.

The settings from this file are read in at program start, and reloaded when
opening a new capture file or changing the configuration profile, and never
written by Wireshark.

The subnets file also changes the behavior of the Endpoints and
Conversations Statistics dialogs for the IPv4 protocol when the IPv4 user
preference Aggregate subnets in Statistics Dialogs is enabled. In this
case, when an IPv4 address matches a subnet, the statistics dialog will
show this subnet instead of the IPv4 address.

	
vlans

	
Wireshark uses the vlans file to translate VLAN tag IDs into names.

If there is a vlans file in the currently active profile folder, it is used. Otherwise, the vlans file in the personal configuration folder is used.

Each line in this file consists of one VLAN tag ID and a describing name separated by whitespace or tab.

An example is:

 123 Server-LAN
2049 HR-Client-LAN

The settings from this file are read in when a VLAN ID is to be translated
to a name, and never written by Wireshark.

	
wka

	
At program start, if there is a wka file in the global configuration folder,
it is read.

The entries in this file are used to translate MAC addresses and MAC address
prefixes into names. The format is that of the manuf file. This file is
distributed with Wireshark, and contains data assembled from various non IEEE
but respected sources.

The settings from this file are read in at program start, and reloaded when
opening a new capture file or changing the configuration profile, and never
written by Wireshark.

Plugin folders

 Wireshark supports plugins for various purposes. Plugins can either be
scripts written in Lua or code written in C or C++ and compiled to
machine code.

Wireshark looks for plugins in both a personal plugin folder and a
global plugin folder. Lua plugins are stored in the plugin folders;
compiled plugins are stored in subfolders of the plugin folders, with
the subfolder name being the Wireshark minor version number (X.Y). There is
another hierarchical level for each Wireshark plugin type (libwireshark,
libwiretap and codecs). So for example the location for a libwireshark plugin
foo.so (foo.dll on Windows) would be PLUGINDIR/X.Y/epan
(libwireshark used to be called libepan; the other folder names are codecs
and wiretap).

On Windows:

	
The personal plugin folder is %APPDATA%\Wireshark\plugins.

	
The global plugin folder is WIRESHARK\plugins.

On Unix-like systems:

	
The personal plugin folder is ~/.local/lib/wireshark/plugins.

To provide better support for binary plugins this folder changed in Wireshark 2.5.
It is recommended to use the new folder but for Lua scripts only you may
continue to use $XDG_CONFIG_HOME/wireshark/plugins for backward-compatibility.
This is useful to have older versions of Wireshark installed side-by-side. In case
of duplicate file names between old and new the new folder wins.

	
If you are running on macOS and Wireshark is installed as an
application bundle, the global plugin folder is
%APPDIR%/Contents/PlugIns/wireshark, otherwise it’s
INSTALLDIR/lib/wireshark/plugins.

Windows folders

 Here you will find some details about the folders used in Wireshark on different
Windows versions.

As already mentioned, you can find the currently used folders in the “About
Wireshark” dialog.

Windows profiles

 Windows uses some special directories to store user configuration files which
define the “user profile”. This can be confusing, as the default directory
location changed from Windows version to version and might also be different for
English and internationalized versions of Windows.

If you’ve upgraded to a new Windows version, your profile might be kept in the
former location. The defaults mentioned here might not apply.

The following guides you to the right place where to look for Wireshark’s
profile data.

	
Windows 10, Windows 8.1, Windows 8, Windows 7, Windows Vista, and associated server editions

	
C:\Users\username\AppData\Roaming\Wireshark.

	
Windows XP and Windows Server 2003 [

Appendix C: Protocols and Protocol Fields

Appendix C: Protocols and Protocol Fields

 Wireshark distinguishes between protocols (e.g., tcp) and protocol fields (e.g.,
tcp.port).

A comprehensive list of all protocols and protocol fields can be found
in the “Display Filter Reference” at
https://www.wireshark.org/docs/dfref/

Appendix D: Related command line tools

Appendix D: Related command line tools

Introduction

 Wireshark comes with an array of
command line tools which can be helpful for packet analysis. Some of
these tools are described in this chapter. You can find more
information about all of Wireshark’s command line tools on
the web site.

tshark: Terminal-based Wireshark

 TShark is a terminal oriented version of Wireshark designed for capturing and
displaying packets when an interactive user interface isn’t necessary or
available. It supports the same options as wireshark. For more information on
tshark consult your local manual page (man tshark) or
the online version.

Listing 10. Help information available from tshark
 TShark (Wireshark) 4.5.0 (v4.5.0rc0-1519-gdac4ac7b76ff)
Dump and analyze network traffic.
See https://www.wireshark.org for more information.

Usage: tshark [options] ...

Capture interface:
 -i <interface>, --interface <interface>
 name or idx of interface (def: first non-loopback)
 -f <capture filter> packet filter in libpcap filter syntax
 -s <snaplen>, --snapshot-length <snaplen>
 packet snapshot length (def: appropriate maximum)
 -p, --no-promiscuous-mode
 don't capture in promiscuous mode
 -I, --monitor-mode capture in monitor mode, if available
 -B <buffer size>, --buffer-size <buffer size>
 size of kernel buffer in MiB (def: 2MiB)
 -y <link type>, --linktype <link type>
 link layer type (def: first appropriate)
 --time-stamp-type <type> timestamp method for interface
 -D, --list-interfaces print list of interfaces and exit
 -L, --list-data-link-types
 print list of link-layer types of iface and exit
 --list-time-stamp-types print list of timestamp types for iface and exit

Capture display:
 --update-interval interval between updates with new packets, in milliseconds (def: 100ms)
Capture stop conditions:
 -c <packet count> stop after n packets (def: infinite)
 -a <autostop cond.> ..., --autostop <autostop cond.> ...
 duration:NUM - stop after NUM seconds
 filesize:NUM - stop this file after NUM KB
 files:NUM - stop after NUM files
 packets:NUM - stop after NUM packets
Capture output:
 -b <ringbuffer opt.> ..., --ring-buffer <ringbuffer opt.>
 duration:NUM - switch to next file after NUM secs
 filesize:NUM - switch to next file after NUM KB
 files:NUM - ringbuffer: replace after NUM files
 packets:NUM - switch to next file after NUM packets
 interval:NUM - switch to next file when the time is
 an exact multiple of NUM secs
 printname:FILE - print filename to FILE when written
 (can use 'stdout' or 'stderr')
Input file:
 -r <infile>, --read-file <infile>
 set the filename to read from (or '-' for stdin)

Processing:
 -2 perform a two-pass analysis
 -M <packet count> perform session auto reset
 -R <read filter>, --read-filter <read filter>
 packet Read filter in Wireshark display filter syntax
 (requires -2)
 -Y <display filter>, --display-filter <display filter>
 packet displaY filter in Wireshark display filter
 syntax
 -n disable all name resolutions (def: "mNd" enabled, or
 as set in preferences)
 -N <name resolve flags> enable specific name resolution(s): "mtndsNvg"
 -d <layer_type>==<selector>,<decode_as_protocol> ...
 "Decode As", see the man page for details
 Example: tcp.port==8888,http
 -H <hosts file> read a list of entries from a hosts file, which will
 then be written to a capture file. (Implies -W n)
 --enable-protocol <proto_name>
 enable dissection of proto_name
 --disable-protocol <proto_name>
 disable dissection of proto_name
 --only-protocols <protocols>
 Only enable dissection of these protocols, comma
 separated. Disable everything else
 --disable-all-protocols
 Disable dissection of all protocols
 --enable-heuristic <short_name>
 enable dissection of heuristic protocol
 --disable-heuristic <short_name>
 disable dissection of heuristic protocol
Output:
 -w <outfile|-> write packets to a pcapng-format file named "outfile"
 (or '-' for stdout). If the output filename has the
 .gz extension, it will be compressed to a gzip archive
 --capture-comment <comment>
 add a capture file comment, if supported
 -C <config profile> start with specified configuration profile
 --global-profile use the global profile instead of personal profile
 -F <output file type> set the output file type; default is pcapng.
 an empty "-F" option will list the file types
 -V add output of packet tree (Packet Details)
 -O <protocols> Only show packet details of these protocols, comma
 separated
 -P, --print print packet summary even when writing to a file
 -S <separator> the line separator to print between packets
 -x add output of hex and ASCII dump (Packet Bytes)
 --hexdump <hexoption> add hexdump, set options for data source and ASCII dump
 all dump all data sources (-x default)
 frames dump only frame data source
 ascii include ASCII dump text (-x default)
 delimit delimit ASCII dump text with '|' characters
 noascii exclude ASCII dump text
 time include frame timestamp preamble
 notime do not include frame timestamp preamble (-x default)
 help display help for --hexdump and exit
 -T pdml|ps|psml|json|jsonraw|ek|tabs|text|fields|?
 format of text output (def: text)
 -j <protocolfilter> protocols layers filter if -T ek|pdml|json selected
 (e.g. "ip ip.flags text", filter does not expand child
 nodes, unless child is specified also in the filter)
 -J <protocolfilter> top level protocol filter if -T ek|pdml|json selected
 (e.g. "http tcp", filter which expands all child nodes)
 -e <field> field to print if -Tfields selected (e.g. tcp.port,
 _ws.col.info)
 this option can be repeated to print multiple fields
 -E<fieldsoption>=<value> set options for output when -Tfields selected:
 bom=y|n print a UTF-8 BOM
 header=y|n switch headers on and off
 separator=/t|/s|<char> select tab, space, printable character as separator
 occurrence=f|l|a print first, last or all occurrences of each field
 aggregator=,|/s|<char> select comma, space, printable character as
 aggregator
 quote=d|s|n select double, single, no quotes for values
 -t (a|ad|adoy|d|dd|e|r|u|ud|udoy)[.[N]]|.[N]
 output format of time stamps (def: r: rel. to first)
 -u s|hms output format of seconds (def: s: seconds)
 -l flush standard output after each packet
 (implies --update-interval 0)
 -q be more quiet on stdout (e.g. when using statistics)
 -Q only log true errors to stderr (quieter than -q)
 -g enable group read access on the output file(s)
 -W n Save extra information in the file, if supported.
 n = write network address resolution information
 -X <key>:<value> eXtension options, see the man page for details
 -U tap_name PDUs export mode, see the man page for details
 -z <statistics> various statistics, see the man page for details
 --export-objects <protocol>,<destdir>
 save exported objects for a protocol to a directory
 named "destdir"
 --export-tls-session-keys <keyfile>
 export TLS Session Keys to a file named "keyfile"
 --color color output text similarly to the Wireshark GUI,
 requires a terminal with 24-bit color support
 Also supplies color attributes to pdml and psml formats
 (Note that attributes are nonstandard)
 --no-duplicate-keys If -T json is specified, merge duplicate keys in an object
 into a single key with as value a json array containing all
 values
 --elastic-mapping-filter <protocols> If -G elastic-mapping is specified, put only the
 specified protocols within the mapping file
 --temp-dir <directory> write temporary files to this directory
 (default: /tmp)
 --compress <type> compress the output file using the type compression format

Diagnostic output:
 --log-level <level> sets the active log level ("critical", "warning", etc.)
 --log-fatal <level> sets level to abort the program ("critical" or "warning")
 --log-domains <[!]list> comma-separated list of the active log domains
 --log-fatal-domains <list>
 list of domains that cause the program to abort
 --log-debug <[!]list> list of domains with "debug" level
 --log-noisy <[!]list> list of domains with "noisy" level
 --log-file <path> file to output messages to (in addition to stderr)

Miscellaneous:
 -h, --help display this help and exit
 -v, --version display version info and exit
 -o <name>:<value> ... override preference setting
 -K <keytab> keytab file to use for kerberos decryption
 -G [report] dump one of several available reports and exit
 default report="fields"
 use "-G help" for more help

Dumpcap can benefit from an enabled BPF JIT compiler if available.
You might want to enable it by executing:
 "echo 1 > /proc/sys/net/core/bpf_jit_enable"
Note that this can make your system less secure!

tcpdump: Capturing with “tcpdump” for viewing with Wireshark

 It’s often more useful to capture packets using tcpdump rather than
wireshark. For example, you might want to do a remote capture and either don’t
have GUI access or don’t have Wireshark installed on the remote machine.

Older versions of tcpdump truncate packets to 68 or 96 bytes. If this is the case,
use -s to capture full-sized packets:

 $ tcpdump -i <interface> -s 65535 -w <file>

You will have to specify the correct interface and the name of a file to
save into. In addition, you will have to terminate the capture with ^C when you
believe you have captured enough packets.

tcpdump is not part of the Wireshark distribution. You can get it from
https://www.tcpdump.org/ or as a standard package in most Linux distributions.
For more information on tcpdump consult your local manual page (man
tcpdump) or the online version.

dumpcap: Capturing with “dumpcap” for viewing with Wireshark

 Dumpcap is a network traffic dump tool. It captures packet data from a live
network and writes the packets to a file. Dumpcap’s native capture file format
is pcapng, which is also the format used by Wireshark.

By default, Dumpcap uses the pcap library to capture traffic
from the first available network interface and writes the received raw
packet data, along with the packets’ time stamps into a pcapng file. The
capture filter syntax follows the rules of the pcap library. For more
information on dumpcap consult your local manual page (man dumpcap)
or the online version.

Listing 11. Help information available from dumpcap
 Dumpcap (Wireshark) 4.5.0 (v4.5.0rc0-1954-gf0e43e21168b)
Capture network packets and dump them into a pcapng or pcap file.
See https://www.wireshark.org for more information.

Usage: dumpcap [options] ...

Capture interface:
 -i <interface>, --interface <interface>
 name or idx of interface (def: first non-loopback)
 or for remote capturing, use this format:
 TCP@<host>:<port>
 --ifname <name> name to use in the capture file for a pipe from which
 we're capturing
 --ifdescr <description>
 description to use in the capture file for a pipe
 from which we're capturing
 -f <capture filter> packet filter in libpcap filter syntax
 -s <snaplen>, --snapshot-length <snaplen>
 packet snapshot length (def: appropriate maximum)
 -p, --no-promiscuous-mode
 don't capture in promiscuous mode
 -I, --monitor-mode capture in monitor mode, if available
 -B <buffer size>, --buffer-size <buffer size>
 size of kernel buffer in MiB (def: 2MiB)
 -y <link type>, --linktype <link type>
 link layer type (def: first appropriate)
 --time-stamp-type <type> timestamp method for interface
 -D, --list-interfaces print list of interfaces and exit
 -L, --list-data-link-types
 print list of link-layer types of iface and exit
 --list-time-stamp-types print list of timestamp types for iface and exit
 --update-interval interval between updates with new packets, in milliseconds (def: 100ms)
 -d print generated BPF code for capture filter
 -k <freq>,[<type>],[<center_freq1>],[<center_freq2>]
 set channel on wifi interface
 -S print statistics for each interface once per second
 -M for -D, -L, and -S, produce machine-readable output

Stop conditions:
 -c <packet count> stop after n packets (def: infinite)
 -a <autostop cond.> ..., --autostop <autostop cond.> ...
 duration:NUM - stop after NUM seconds
 filesize:NUM - stop this file after NUM kB
 files:NUM - stop after NUM files
 packets:NUM - stop after NUM packets
Output (files):
 -w <filename> name of file to save (def: tempfile)
 -g enable group read access on the output file(s)
 -b <ringbuffer opt.> ..., --ring-buffer <ringbuffer opt.>
 duration:NUM - switch to next file after NUM secs
 filesize:NUM - switch to next file after NUM kB
 files:NUM - ringbuffer: replace after NUM files
 packets:NUM - ringbuffer: replace after NUM packets
 interval:NUM - switch to next file when the time is
 an exact multiple of NUM secs
 printname:FILE - print filename to FILE when written
 (can use 'stdout' or 'stderr')
 -F output file type (default: pcapng)
 an empty "-F" option will list the file types
 -n use pcapng format instead of pcap (default)
 -P use libpcap format instead of pcapng
 --capture-comment <comment>
 add a capture comment to the output file
 (only for pcapng)
 --temp-dir <directory> write temporary files to this directory
 (default: /tmp)

Diagnostic output:
 --log-level <level> sets the active log level ("critical", "warning", etc.)
 --log-fatal <level> sets level to abort the program ("critical" or "warning")
 --log-domains <[!]list> comma-separated list of the active log domains
 --log-fatal-domains <list>
 list of domains that cause the program to abort
 --log-debug <[!]list> list of domains with "debug" level
 --log-noisy <[!]list> list of domains with "noisy" level
 --log-file <path> file to output messages to (in addition to stderr)

Miscellaneous:
 -N <packet_limit> maximum number of packets buffered within dumpcap
 -C <byte_limit> maximum number of bytes used for buffering packets
 within dumpcap
 -t use a separate thread per interface
 -q don't report packet capture counts
 -Q suppress all non-error status messages to stderr
 --application-flavor <flavor>
 set the application flavor
 -v, --version print version information and exit
 -h, --help display this help and exit

Dumpcap can benefit from an enabled BPF JIT compiler if available.
You might want to enable it by executing:
 "echo 1 > /proc/sys/net/core/bpf_jit_enable"
Note that this can make your system less secure!

Example: dumpcap -i eth0 -a duration:60 -w output.pcapng
"Capture packets from interface eth0 until 60s passed into output.pcapng"

Use Ctrl-C to stop capturing at any time.

capinfos: Print information about capture files

 capinfos can print information about capture files including the file
type, number of packets, date and time information, and file hashes.
Information can be printed in human and machine readable formats. For
more information on capinfos consult your local manual page (man
capinfos) or the online
version.

Listing 12. Help information available from capinfos
 Capinfos (Wireshark) 4.5.0 (v4.5.0rc0-48-g7b7ca8210417)
Print various information (infos) about capture files.
See https://www.wireshark.org for more information.

Usage: capinfos [options] <infile> ...

General infos:
 -t display the capture file type
 -E display the capture file encapsulation
 -I display the capture file interface information
 -F display additional capture file information
 -H display the SHA256 and SHA1 hashes of the file
 -k display the capture comment
 -p display individual packet comments

Size infos:
 -c display the number of packets
 -s display the size of the file (in bytes)
 -d display the total length of all packets (in bytes)
 -l display the packet size limit (snapshot length)

Time infos:
 -u display the capture duration (in seconds)
 -a display the timestamp of the earliest packet
 -e display the timestamp of the latest packet
 -o display the capture file chronological status (True/False)
 -S display earliest and latest packet timestamps as seconds

Statistic infos:
 -y display average data rate (in bytes/sec)
 -i display average data rate (in bits/sec)
 -z display average packet size (in bytes)
 -x display average packet rate (in packets/sec)

Metadata infos:
 -n display number of resolved IPv4 and IPv6 addresses
 -D display number of decryption secrets

Output format:
 -L generate long report (default)
 -T generate table report
 -M display machine-readable values in long reports

Table report options:
 -R generate header record (default)
 -r do not generate header record

 -B separate infos with TAB character (default)
 -m separate infos with comma (,) character
 -b separate infos with SPACE character

 -N do not quote infos (default)
 -q quote infos with single quotes (')
 -Q quote infos with double quotes (")

Miscellaneous:
 -h, --help display this help and exit
 -v, --version display version info and exit
 -C cancel processing if file open fails (default is to continue)
 -A generate all infos (default)
 -K disable displaying the capture comment
 -P disable displaying individual packet comments

Options are processed from left to right order with later options superseding
or adding to earlier options.

If no options are given the default is to display all infos in long report
output format.

captype: Prints the types of capture files

 captype can print capture file type information about capture files.
For more information on captype consult your local manual page (man
captype) or the online
version.

Listing 13. Help information available from captype
 Captype (Wireshark) 4.5.0 (v4.5.0rc0-2330-g03777e997fd4)
Print the file types of capture files.
See https://www.wireshark.org for more information.

Usage: captype [options] <infile> ...

Miscellaneous:
 -h, --help display this help and exit
 -v, --version display version info and exit

rawshark: Dump and analyze network traffic.

 Rawshark reads a stream of packets from a file or pipe, and prints a
line describing its output, followed by a set of matching fields for
each packet on stdout. For more information on rawshark consult your
local manual page (man rawshark) or
the online version.

Listing 14. Help information available from rawshark
 Rawshark (Wireshark) 4.5.0 (v4.5.0rc0-48-g7b7ca8210417)
Dump and analyze network traffic.
See https://www.wireshark.org for more information.

Usage: rawshark [options] ...

Input file:
 -r <infile>, --read-file <infile>
 set the pipe or file name to read from

Processing:
 -d <encap:linktype>|<proto:protoname>
 packet encapsulation or protocol
 -F <field> field to display
 -m virtual memory limit, in bytes
 -n disable all name resolutions (def: "mNd" enabled, or
 as set in preferences)
 -N <name resolve flags> enable specific name resolution(s): "mnNtdv"
 -p use the system's packet header format
 (which may have 64-bit timestamps)
 -R <read filter>, --read-filter <read filter>
 packet filter in Wireshark display filter syntax
 -s skip PCAP header on input
 -Y <display filter>, --display-filter <display filter>
 packet filter in Wireshark display filter syntax
 --enable-protocol <proto_name>
 enable dissection of proto_name
 --disable-protocol <proto_name>
 disable dissection of proto_name
 --only-protocols <protocols>
 Only enable dissection of these protocols, comma
 separated. Disable everything else
 --disable-all-protocols
 Disable dissection of all protocols
 --enable-heuristic <short_name>
 enable dissection of heuristic protocol
 --disable-heuristic <short_name>
 disable dissection of heuristic protocol

Output:
 -l flush output after each packet
 -S format string for fields
 (%D - name, %S - stringval, %N numval)
 -t (a|ad|adoy|d|dd|e|r|u|ud|udoy)[.[N]]|.[N]
 output format of time stamps (def: r: rel. to first)
 -u s|hms output format of seconds (def: s: seconds)

Diagnostic output:
 --log-level <level> sets the active log level ("critical", "warning", etc.)
 --log-fatal <level> sets level to abort the program ("critical" or "warning")
 --log-domains <[!]list> comma-separated list of the active log domains
 --log-fatal-domains <list>
 list of domains that cause the program to abort
 --log-debug <[!]list> list of domains with "debug" level
 --log-noisy <[!]list> list of domains with "noisy" level
 --log-file <path> file to output messages to (in addition to stderr)

Miscellaneous:
 -h, --help display this help and exit
 -v, --version display version info and exit
 -o <name>:<value> ... override preference setting
 -K <keytab> keytab file to use for kerberos decryption

editcap: Edit capture files

 editcap is a general-purpose utility for modifying capture files. Its
main function is to remove packets from capture files, but it can also
be used to convert capture files from one format to another, as well as
to print information about capture files. For more information on
editcap consult your local manual page (man editcap) or
the online version.

Listing 15. Help information available from editcap
 Editcap (Wireshark) 4.5.0 (v4.5.0rc0-2007-gb95179da6871)
Edit and/or translate the format of capture files.
See https://www.wireshark.org for more information.

Usage: editcap [options] ... <infile> <outfile> [<packet#>[-<packet#>] ...]

<infile> and <outfile> must both be present; use '-' for stdin or stdout.
A single packet or a range of packets can be selected.

Packet selection:
 -r keep the selected packets; default is to delete them.
 -A <start time> only read packets whose timestamp is after (or equal
 to) the given time.
 -B <stop time> only read packets whose timestamp is before the
 given time.
 Time format for -A/-B/-R options is
 YYYY-MM-DDThh:mm:ss[.nnnnnnnnn][Z|+-hh:mm]
 Unix epoch timestamps are also supported.

Duplicate packet removal:
 --novlan remove vlan info from packets before checking for duplicates.
 -d remove packet if duplicate (window == 5).
 -D <dup window> remove packet if duplicate; configurable <dup window>.
 Valid <dup window> values are 0 to 1000000.
 NOTE: A <dup window> of 0 with -V (verbose option) is
 useful to print MD5 hashes.
 -w <dup time window> remove packet if duplicate packet is found EQUAL TO OR
 LESS THAN <dup time window> prior to current packet.
 A <dup time window> is specified in relative seconds
 (e.g. 0.000001).
 NOTE: The use of the 'Duplicate packet removal' options with
 other editcap options except -V may not always work as expected.
 Specifically the -r, -t or -S options will very likely NOT have the
 desired effect if combined with the -d, -D or -w.
 --skip-radiotap-header skip radiotap header when checking for packet duplicates.
 Useful when processing packets captured by multiple radios
 on the same channel in the vicinity of each other.
 --set-unused set unused byts to zero in sll link addr.

Packet manipulation:
 -s <snaplen> truncate each packet to max. <snaplen> bytes of data.
 -C [offset:]<choplen> chop each packet by <choplen> bytes. Positive values
 chop at the packet beginning, negative values at the
 packet end. If an optional offset precedes the length,
 then the bytes chopped will be offset from that value.
 Positive offsets are from the packet beginning,
 negative offsets are from the packet end. You can use
 this option more than once, allowing up to 2 chopping
 regions within a packet provided that at least 1
 choplen is positive and at least 1 is negative.
 -L adjust the frame (i.e. reported) length when chopping
 and/or snapping.
 -R <framenum>:<time> replace the timestamp for given frame number.
 Accept the same time format as used for -A/-B options.
 -t <time adjustment> adjust the timestamp of each packet.
 <time adjustment> is in relative seconds (e.g. -0.5).
 -S <strict adjustment> adjust timestamp of packets if necessary to ensure
 strict chronological increasing order. The <strict
 adjustment> is specified in relative seconds with
 values of 0 or 0.000001 being the most reasonable.
 A negative adjustment value will modify timestamps so
 that each packet's delta time is the absolute value
 of the adjustment specified. A value of -0 will set
 all packets to the timestamp of the first packet.
 -E <error probability> set the probability (between 0.0 and 1.0 incl.) that
 a particular packet byte will be randomly changed.
 -o <change offset> When used in conjunction with -E, skip some bytes from the
 beginning of the packet. This allows one to preserve some
 bytes, in order to have some headers untouched.
 --seed <seed> When used in conjunction with -E, set the seed to use for
 the pseudo-random number generator. This allows one to
 repeat a particular sequence of errors.
 -I <bytes to ignore> ignore the specified number of bytes at the beginning
 of the frame during MD5 hash calculation, unless the
 frame is too short, then the full frame is used.
 Useful to remove duplicated packets taken on
 several routers (different mac addresses for
 example).
 e.g. -I 26 in case of Ether/IP will ignore
 ether(14) and IP header(20 - 4(src ip) - 4(dst ip)).
 -a <framenum>:<comment> Add or replace packet comment for given frame number.
 Any pre-existing packet comments from the input file
 for the specified frame will be replaced unless used
 in conjunction with "--preserve-packet-comments".
 --discard-packet-comments
 Discard all pre-existing packet comments from the input
 file when writing the output file. Does not discard
 new comments added by "-a" in the same command line.
 --preserve-packet-comments
 Preserve from the input file all pre-existing packet
 comments when adding a new packet comment with "-a".
 Without this option each "-a" will cause to be
 discarded any pre-existing comments for the specified
 frame.

Output File(s):
 if the output file(s) have the .gz extension, then
 gzip compression will be used
 -c <packets per file> split the packet output to different files based on
 uniform packet counts with a maximum of
 <packets per file> each.
 -i <seconds per file> split the packet output to different files based on
 uniform time intervals with a maximum of
 <seconds per file> each.
 -F <capture type> set the output file type; default is pcapng.
 An empty "-F" option will list the file types.
 -T <encap type> set the output file encapsulation type; default is the
 same as the input file. An empty "-T" option will
 list the encapsulation types.
 --inject-secrets <type>,<file> Insert decryption secrets from <file>. List
 supported secret types with "--inject-secrets help".
 --extract-secrets Extract decryption secrets into the output file instead.
 Incompatible with other options besides -V.
 --discard-all-secrets Discard all decryption secrets from the input file
 when writing the output file. Does not discard
 secrets added by "--inject-secrets" in the same
 command line.
 --capture-comment <comment>
 Add a capture file comment, if supported.
 --discard-capture-comment
 Discard capture file comments from the input file
 when writing the output file. Does not discard
 comments added by "--capture-comment" in the same
 command line.
 --compress <type> Compress the output file using the type compression format.

Miscellaneous:
 -h, --help display this help and exit.
 -V verbose output.
 If -V is used with any of the 'Duplicate Packet
 Removal' options (-d, -D or -w) then Packet lengths
 and MD5 hashes are printed to standard-error.
 -v, --version print version information and exit.

Listing 16. Capture file types available from editcap -F
 editcap: The available capture file types for the "-F" flag are:
 pcap - Wireshark/tcpdump/... - pcap
 pcapng - Wireshark/... - pcapng
 5views - InfoVista 5View capture
 btsnoop - Symbian OS btsnoop
 commview-ncf - TamoSoft CommView NCF
 commview-ncfx - TamoSoft CommView NCFX
 dct2000 - Catapult DCT2000 trace (.out format)
 erf - Endace ERF capture
 eyesdn - EyeSDN USB S0/E1 ISDN trace format
 k12text - K12 text file
 lanalyzer - Novell LANalyzer
 logcat - Android Logcat Binary format
 logcat-brief - Android Logcat Brief text format
 logcat-long - Android Logcat Long text format
 logcat-process - Android Logcat Process text format
 logcat-tag - Android Logcat Tag text format
 logcat-thread - Android Logcat Thread text format
 logcat-threadtime - Android Logcat Threadtime text format
 logcat-time - Android Logcat Time text format
 modpcap - Modified tcpdump - pcap
 mp2t - MPEG2 transport stream
 netmon1 - Microsoft NetMon 1.x
 netmon2 - Microsoft NetMon 2.x
 nettl - HP-UX nettl trace
 ngsniffer - Sniffer (DOS)
 ngwsniffer_1_1 - NetXray, Sniffer (Windows) 1.1
 ngwsniffer_2_0 - Sniffer (Windows) 2.00x
 nokiapcap - Nokia tcpdump - pcap
 nsecpcap - Wireshark/tcpdump/... - nanosecond pcap
 nstrace10 - NetScaler Trace (Version 1.0)
 nstrace20 - NetScaler Trace (Version 2.0)
 nstrace30 - NetScaler Trace (Version 3.0)
 nstrace35 - NetScaler Trace (Version 3.5)
 observer - Viavi Observer
 rf5 - Tektronix K12xx 32-bit .rf5 format
 rh6_1pcap - RedHat 6.1 tcpdump - pcap
 snoop - Sun snoop
 suse6_3pcap - SuSE 6.3 tcpdump - pcap
 visual - Visual Networks traffic capture

Listing 17. Encapsulation types available from editcap -T
 editcap: The available encapsulation types for the "-T" flag are:
 alp - ATSC Link-Layer Protocol (A/330) packets
 ap1394 - Apple IP-over-IEEE 1394
 arcnet - ARCNET
 arcnet_linux - Linux ARCNET
 ascend - Lucent/Ascend access equipment
 atm-pdus - ATM PDUs
 atm-pdus-untruncated - ATM PDUs - untruncated
 atm-rfc1483 - RFC 1483 ATM
 auerlog - Auerswald Log
 autosardlt - AUTOSAR DLT
 ax25 - Amateur Radio AX.25
 ax25-kiss - AX.25 with KISS header
 bacnet-ms-tp - BACnet MS/TP
 bacnet-ms-tp-with-direction - BACnet MS/TP with Directional Info
 ber - ASN.1 Basic Encoding Rules
 bluetooth-bredr-bb-rf - Bluetooth BR/EDR Baseband RF
 bluetooth-h4 - Bluetooth H4
 bluetooth-h4-linux - Bluetooth H4 with linux header
 bluetooth-hci - Bluetooth without transport layer
 bluetooth-le-ll - Bluetooth Low Energy Link Layer
 bluetooth-le-ll-rf - Bluetooth Low Energy Link Layer RF
 bluetooth-linux-monitor - Bluetooth Linux Monitor
 can20b - Controller Area Network 2.0B
 chdlc - Cisco HDLC
 chdlc-with-direction - Cisco HDLC with Directional Info
 cosine - CoSine L2 debug log
 dbus - D-Bus
 dct2000 - Catapult DCT2000
 dect_nr - DECT-2020 New Radio (NR) MAC layer
 docsis - Data Over Cable Service Interface Specification
 docsis31_xra31 - DOCSIS with Excentis XRA pseudo-header
 dpauxmon - DisplayPort AUX channel with Unigraf pseudo-header
 dpnss_link - Digital Private Signalling System No 1 Link Layer
 dvbci - DVB-CI (Common Interface)
 ebhscr - Elektrobit High Speed Capture and Replay
 ems - EMS (EGNOS Message Server) file
 enc - OpenBSD enc(4) encapsulating interface
 epon - Ethernet Passive Optical Network
 erf - Extensible Record Format
 eri_enb_log - Ericsson eNode-B raw log
 ether - Ethernet
 ether-mpacket - IEEE 802.3br mPackets
 ether-nettl - Ethernet with nettl headers
 etw - Event Tracing for Windows messages
 fc2 - Fibre Channel FC-2
 fc2sof - Fibre Channel FC-2 With Frame Delimiter
 fddi - FDDI
 fddi-nettl - FDDI with nettl headers
 fddi-swapped - FDDI with bit-swapped MAC addresses
 fira-uci - FiRa UWB Controller Interface (UCI) protocol.
 flexray - FlexRay
 frelay - Frame Relay
 frelay-with-direction - Frame Relay with Directional Info
 gcom-serial - GCOM Serial
 gcom-tie1 - GCOM TIE1
 gfp-f - ITU-T G.7041/Y.1303 Generic Framing Procedure Frame-mapped mode
 gfp-t - ITU-T G.7041/Y.1303 Generic Framing Procedure Transparent mode
 gprs-llc - GPRS LLC
 gsm_um - GSM Um Interface
 hhdlc - HiPath HDLC
 i2c-linux - I2C with Linux-specific pseudo-header
 ieee-802-11 - IEEE 802.11 Wireless LAN
 ieee-802-11-avs - IEEE 802.11 plus AVS radio header
 ieee-802-11-netmon - IEEE 802.11 plus Network Monitor radio header
 ieee-802-11-prism - IEEE 802.11 plus Prism II monitor mode radio header
 ieee-802-11-radio - IEEE 802.11 Wireless LAN with radio information
 ieee-802-11-radiotap - IEEE 802.11 plus radiotap radio header
 ieee-802-16-mac-cps - IEEE 802.16 MAC Common Part Sublayer
 infiniband - InfiniBand
 ios - Cisco IOS internal
 ip-ib - IP over IB
 ip-over-fc - RFC 2625 IP-over-Fibre Channel
 ip-over-ib - IP over InfiniBand
 ipfix - RFC 5655/RFC 5101 IPFIX
 ipmb-kontron - Intelligent Platform Management Bus with Kontron pseudo-header
 ipmi-trace - IPMI Trace Data Collection
 ipnet - Solaris IPNET
 irda - IrDA
 isdn - ISDN
 iso14443 - ISO 14443 contactless smartcard standards
 ixveriwave - IxVeriWave header and stats block
 jfif - JPEG/JFIF
 json - JavaScript Object Notation
 juniper-atm1 - Juniper ATM1
 juniper-atm2 - Juniper ATM2
 juniper-chdlc - Juniper C-HDLC
 juniper-ether - Juniper Ethernet
 juniper-frelay - Juniper Frame-Relay
 juniper-ggsn - Juniper GGSN
 juniper-mlfr - Juniper MLFR
 juniper-mlppp - Juniper MLPPP
 juniper-ppp - Juniper PPP
 juniper-pppoe - Juniper PPPoE
 juniper-st - Juniper Secure Tunnel Information
 juniper-svcs - Juniper Services
 juniper-vn - Juniper VN
 juniper-vp - Juniper Voice PIC
 k12 - K12 protocol analyzer
 lapb - LAPB
 lapd - LAPD
 layer1-event - EyeSDN Layer 1 event
 lin - Local Interconnect Network
 linux-atm-clip - Linux ATM CLIP
 linux-lapd - LAPD with Linux pseudo-header
 linux-sll - Linux cooked-mode capture v1
 linux-sll2 - Linux cooked-mode capture v2
 log_3GPP - 3GPP Phone Log
 logcat - Android Logcat Binary format
 logcat_brief - Android Logcat Brief text format
 logcat_long - Android Logcat Long text format
 logcat_process - Android Logcat Process text format
 logcat_tag - Android Logcat Tag text format
 logcat_thread - Android Logcat Thread text format
 logcat_threadtime - Android Logcat Threadtime text format
 logcat_time - Android Logcat Time text format
 loop - OpenBSD loopback
 loratap - LoRaTap
 ltalk - Localtalk
 mdb - MDB (Multi-Drop Bus)
 message_analyzer_wfp_capture2_v4 - Message Analyzer WFP Capture2 v4
 message_analyzer_wfp_capture2_v6 - Message Analyzer WFP Capture2 v6
 message_analyzer_wfp_capture_auth_v4 - Message Analyzer WFP Capture Auth v4
 message_analyzer_wfp_capture_auth_v6 - Message Analyzer WFP Capture Auth v6
 message_analyzer_wfp_capture_v4 - Message Analyzer WFP Capture v4
 message_analyzer_wfp_capture_v6 - Message Analyzer WFP Capture v6
 mime - MIME
 most - Media Oriented Systems Transport
 mp2ts - ISO/IEC 13818-1 MPEG2-TS
 mp4 - MP4 files
 mpeg - MPEG
 mtp2 - SS7 MTP2
 mtp2-with-phdr - MTP2 with pseudoheader
 mtp3 - SS7 MTP3
 mux27010 - MUX27010
 netanalyzer - Hilscher netANALYZER
 netanalyzer-transparent - Hilscher netANALYZER-Transparent
 netlink - Linux Netlink
 netmon_event - Network Monitor Network Event
 netmon_filter - Network Monitor Filter
 netmon_header - Network Monitor Header
 netmon_network_info - Network Monitor Network Info
 nfc-llcp - NFC LLCP
 nflog - NFLOG
 nordic_ble - nRF Sniffer for Bluetooth LE
 nstrace10 - NetScaler Encapsulation 1.0 of Ethernet
 nstrace20 - NetScaler Encapsulation 2.0 of Ethernet
 nstrace30 - NetScaler Encapsulation 3.0 of Ethernet
 nstrace35 - NetScaler Encapsulation 3.5 of Ethernet
 null - NULL/Loopback
 packetlogger - Apple Bluetooth PacketLogger
 pflog - OpenBSD PF Firewall logs
 pflog-old - OpenBSD PF Firewall logs, pre-3.4
 pktap - Apple PKTAP
 ppi - Per-Packet Information header
 ppp - PPP
 ppp-with-direction - PPP with Directional Info
 pppoes - PPP-over-Ethernet session
 raw-icmp-nettl - Raw ICMP with nettl headers
 raw-icmpv6-nettl - Raw ICMPv6 with nettl headers
 raw-telnet-nettl - Raw telnet with nettl headers
 rawip - Raw IP
 rawip-nettl - Raw IP with nettl headers
 rawip4 - Raw IPv4
 rawip6 - Raw IPv6
 redback - Redback SmartEdge
 rfc7468 - RFC 7468 file
 rtac-serial - RTAC serial-line
 ruby_marshal - Ruby marshal object
 s4607 - STANAG 4607
 s5066-dpdu - STANAG 5066 Data Transfer Sublayer PDUs(D_PDU)
 sccp - SS7 SCCP
 sctp - SCTP
 sdh - SDH
 sdjournal - systemd journal
 sdlc - SDLC
 silabs-dch - Silabs Debug Channel
 sita-wan - SITA WAN packets
 slip - SLIP
 socketcan - SocketCAN
 symantec - Symantec Enterprise Firewall
 tnef - Transport-Neutral Encapsulation Format
 tr - Token Ring
 tr-nettl - Token Ring with nettl headers
 tzsp - Tazmen sniffer protocol
 unknown - Unknown
 unknown-nettl - Unknown link-layer type with nettl headers
 usb-20 - USB 2.0/1.1/1.0 packets
 usb-20-full - Full-Speed USB 2.0/1.1/1.0 packets
 usb-20-high - High-Speed USB 2.0 packets
 usb-20-low - Low-Speed USB 2.0/1.1/1.0 packets
 usb-darwin - USB packets with Darwin (macOS, etc.) headers
 usb-freebsd - USB packets with FreeBSD header
 usb-linux - USB packets with Linux header
 usb-linux-mmap - USB packets with Linux header and padding
 usb-usbpcap - USB packets with USBPcap header
 user0 - USER 0
 user1 - USER 1
 user2 - USER 2
 user3 - USER 3
 user4 - USER 4
 user5 - USER 5
 user6 - USER 6
 user7 - USER 7
 user8 - USER 8
 user9 - USER 9
 user10 - USER 10
 user11 - USER 11
 user12 - USER 12
 user13 - USER 13
 user14 - USER 14
 user15 - USER 15
 v5-ef - V5 Envelope Function
 vpp - Vector Packet Processing graph dispatch trace
 vsock - Linux vsock
 whdlc - Wellfleet HDLC
 wireshark-upper-pdu - Wireshark Upper PDU export
 wpan - IEEE 802.15.4 Wireless PAN
 wpan-nofcs - IEEE 802.15.4 Wireless PAN with FCS not present
 wpan-nonask-phy - IEEE 802.15.4 Wireless PAN non-ASK PHY
 wpan-tap - IEEE 802.15.4 Wireless with TAP pseudo-header
 x2e-serial - X2E serial line capture
 x2e-xoraya - X2E Xoraya
 x25-nettl - X.25 with nettl headers
 xeth - Xerox 3MB Ethernet
 zbncp - ZBOSS NCP
 zwave-serial - Z-Wave Serial API packets

mergecap: Merging multiple capture files into one

 Mergecap is a program that combines multiple saved capture files into a single
output file specified by the -w argument. Mergecap can read libpcap
capture files, including those of tcpdump. In addition, Mergecap can read
capture files from snoop (including Shomiti) and atmsnoop, LanAlyzer, Sniffer
(compressed or uncompressed), Microsoft Network Monitor, AIX’s iptrace, NetXray,
Sniffer Pro, RADCOM’s WAN/LAN analyzer, Lucent/Ascend router debug output,
HP-UX’s nettl, and the dump output from Toshiba’s ISDN routers. There is no need
to tell Mergecap what type of file you are reading; it will determine the file
type by itself. Mergecap is also capable of reading any of these file formats if
they are compressed using gzip. Mergecap recognizes this directly from the
file; the “.gz” extension is not required for this purpose.

By default, Mergecap writes all of the packets in the input capture files to a
pcapng file. The -F flag can be used
to specify the capture file’s output format ; it can write the file
in libpcap format (standard libpcap format, a modified format used by some
patched versions of libpcap, the format used by Red Hat Linux 6.1, or the format
used by SuSE Linux 6.3), snoop format, uncompressed Sniffer format, Microsoft
Network Monitor 1.x format, and the format used by Windows-based versions of the
Sniffer software.

Packets from the input files are merged in chronological order based on each
frame’s timestamp, unless the -a flag is specified. Mergecap assumes that
frames within a single capture file are already stored in chronological order.
When the -a flag is specified, packets are copied directly from each input
file to the output file, independent of each frame’s timestamp.

If the -s flag is used to specify a snapshot length, frames in the input file
with more captured data than the specified snapshot length will have only the
amount of data specified by the snapshot length written to the output file. This
may be useful if the program that is to read the output file cannot handle
packets larger than a certain size (for example, the versions of snoop in
Solaris 2.5.1 and Solaris 2.6 appear to reject Ethernet frames larger than the
standard Ethernet MTU, making them incapable of handling gigabit Ethernet
captures if jumbo frames were used).

If the -T flag is used to specify an encapsulation type, the encapsulation
type of the output capture file will be forced to the specified type, rather
than being the type appropriate to the encapsulation type of the input capture
file. Note that this merely forces the encapsulation type of the output file to
be the specified type; the packet headers of the packets will not be translated
from the encapsulation type of the input capture file to the specified
encapsulation type (for example, it will not translate an Ethernet capture to an
FDDI capture if an Ethernet capture is read and -T fddi is specified).

For more information on mergecap consult your local manual page (man
mergecap) or the online
version.

Listing 18. Help information available from mergecap
 Mergecap (Wireshark) 4.5.0 (v4.5.0rc0-48-g7b7ca8210417)
Merge two or more capture files into one.
See https://www.wireshark.org for more information.

Usage: mergecap [options] -w <outfile>|- <infile> [<infile> ...]

Output:
 -a concatenate rather than merge files.
 default is to merge based on frame timestamps.
 -s <snaplen> truncate packets to <snaplen> bytes of data.
 -w <outfile>|- set the output filename to <outfile> or '-' for stdout.
 if the output filename has the .gz extension, it will be compressed to a gzip archive
 -F <capture type> set the output file type; default is pcapng.
 an empty "-F" option will list the file types.
 -I <IDB merge mode> set the merge mode for Interface Description Blocks; default is 'all'.
 an empty "-I" option will list the merge modes.
 --compress <type> compress the output file using the type compression format.

Miscellaneous:
 -h, --help display this help and exit.
 -V verbose output.
 -v, --version print version information and exit.

A simple example merging dhcp-capture.pcapng and imap-1.pcapng into
outfile.pcapng is shown below.

Listing 19. Simple example of using mergecap
 $ mergecap -w outfile.pcapng dhcp-capture.pcapng imap-1.pcapng

text2pcap: Converting ASCII hexdumps to network captures

 There may be some occasions when you wish to convert a hex dump of some network
traffic into a capture file.

text2pcap is a program that reads in an ASCII hex dump and writes the data
described into any capture file format supported by libwiretap. text2pcap can
read hexdumps with multiple packets in them, and build a capture file of
multiple packets.
text2pcap is also capable of generating dummy Ethernet, IP, UDP, TCP or SCTP
headers, in order to build fully processable packet dumps from hexdumps of
application-level data only.

text2pcap understands a hexdump of the form generated by od -A x -t x1. In
other words, each byte is individually displayed and surrounded with a space.
Each line begins with an offset describing the position in the packet, each new
packet starts with an offset of 0 and there is a space separating the offset
from the following bytes. The offset
is a hex number (can also be octal - see -o), of more than two hex digits. Here
is a sample dump that text2pcap can recognize:

 000000 00 e0 1e a7 05 6f 00 10
000008 5a a0 b9 12 08 00 46 00
000010 03 68 00 00 00 00 0a 2e
000018 ee 33 0f 19 08 7f 0f 19
000020 03 80 94 04 00 00 10 01
000028 16 a2 0a 00 03 50 00 0c
000030 01 01 0f 19 03 80 11 01

There is no limit on the width or number of bytes per line. Also the text dump
at the end of the line is ignored. Bytes/hex numbers can be uppercase or
lowercase. Any text before the offset is ignored, including email forwarding
characters “>”. Any lines of text between the bytestring lines is ignored.
The offsets are used to track the bytes, so offsets must be correct. Any line
which has only bytes without a leading offset is ignored. An offset is
recognized as being a hex number longer than two characters. Any text after the
bytes is ignored (e.g., the character dump). Any hex numbers in this text are
also ignored. An offset of zero is indicative of starting a new packet, so a
single text file with a series of hexdumps can be converted into a packet
capture with multiple packets. Packets may be preceded by a timestamp. These
are interpreted according to the format given on the command line. If not, the
first packet is timestamped with the current time the conversion takes place.
Multiple packets are written with timestamps differing by one microsecond each.
In general, short of these restrictions, text2pcap
is pretty liberal about reading in hexdumps and has been tested with a variety
of mangled outputs (including being forwarded through email multiple times, with
limited line wrap etc.)

There are a couple of other special features to note. Any line where the first
non-whitespace character is “#” will be ignored as a comment. Any line beginning
with #TEXT2PCAP is a directive and options can be inserted after this command to
be processed by text2pcap. Currently there are no directives implemented; in the
future, these may be used to give more fine-grained control on the dump and the
way it should be processed e.g., timestamps, encapsulation type etc.

text2pcap also allows the user to read in dumps of application-level data, by
inserting dummy L2, L3 and L4 headers before each packet. Possibilities include
inserting headers such as Ethernet, Ethernet + IP, Ethernet + IP + UDP, or TCP,
or SCTP before each packet. This allows Wireshark or any other full-packet
decoder to handle these dumps.

For more information on text2pcap consult your local manual page (man
text2pcap) or the online
version.

Listing 20. Help information available from text2pcap
 Text2pcap (Wireshark) 4.5.0 (v4.5.0rc0-48-g7b7ca8210417)
Generate a capture file from an ASCII hexdump of packets.
See https://www.wireshark.org for more information.

Usage: text2pcap [options] <infile> <outfile>

where <infile> specifies input filename (use - for standard input)
 <outfile> specifies output filename (use - for standard output)

Input:
 -o hex|oct|dec|none parse offsets as (h)ex, (o)ctal, (d)ecimal, or (n)one;
 default is hex.
 -t <timefmt> treat the text before the packet as a date/time code;
 <timefmt> is a format string supported by strptime,
 with an optional %f descriptor for fractional seconds.
 Example: The time "10:15:14.5476" has the format code
 "%H:%M:%S.%f"
 The special format string ISO supports ISO-8601 times.
 NOTE: Date/time fields from the current date/time are
 used as the default for unspecified fields.
 -D the text before the packet starts with an I or an O,
 indicating that the packet is inbound or outbound.
 This is used when generating dummy headers if the
 output format supports it (e.g. pcapng).
 -a enable ASCII text dump identification.
 The start of the ASCII text dump can be identified
 and excluded from the packet data, even if it looks
 like a HEX dump.
 NOTE: Do not enable it if the input file does not
 contain the ASCII text dump.
 -r <regex> enable regex mode. Scan the input using <regex>, a Perl
 compatible regular expression matching a single packet.
 Named capturing subgroups are used to identify fields:
 <data> (mand.), and <time>, <dir>, and <seqno> (opt.)
 The time field format is taken from the -t option
 Example: -r '^(?<dir>[<>])\s(?<time>\d+:\d\d:\d\d.\d+)\s(?<data>[0-9a-fA-F]+)$'
 could match a file with lines like
 > 0:00:00.265620 a130368b000000080060
 < 0:00:00.295459 a2010800000000000000000800000000
 -b 2|8|16|64 encoding base (radix) of the packet data in regex mode
 (def: 16: hexadecimal) No effect in hexdump mode.

Output:
 if the output file(s) have the .gz extension, then
 gzip compression will be used.
 -F <capture type> set the output file type; default is pcapng.
 an empty "-F" option will list the file types.
 -E <encap type> set the output file encapsulation type; default is
 ether (Ethernet). An empty "-E" option will list
 the encapsulation types.
 -l <typenum> set the output file encapsulation type via link-layer
 type number; default is 1 (Ethernet). See
 https://www.tcpdump.org/linktypes.html for a list of
 numbers.
 Example: -l 7 for ARCNet packets.
 -m <max-packet> max packet length in output; default is 262144
 -N <intf-name> assign name to the interface in the pcapng file.
 --compress <type> Compress the output file using the type compression format.

Prepend dummy header:
 -e <ethertype> prepend dummy Ethernet II header with specified EtherType
 (in HEX).
 Example: -e 0x806 to specify an ARP packet.
 -i <proto> prepend dummy IP header with specified IP protocol
 (in DECIMAL).
 Automatically prepends Ethernet header as well if
 link-layer type is Ethernet.
 Example: -i 46
 -4 <srcip>,<destip> prepend dummy IPv4 header with specified
 source and destination addresses.
 Example: -4 10.0.0.1,10.0.0.2
 -6 <srcip>,<destip> prepend dummy IPv6 header with specified
 source and destination addresses.
 Example: -6 2001:db8::b3ff:fe1e:8329,2001:0db8:85a3::8a2e:0370:7334
 -u <srcp>,<destp> prepend dummy UDP header with specified
 source and destination ports (in DECIMAL).
 Automatically prepends Ethernet & IP headers as well.
 Example: -u 1000,69 to make the packets look like
 TFTP/UDP packets.
 -T <srcp>,<destp> prepend dummy TCP header with specified
 source and destination ports (in DECIMAL).
 Automatically prepends Ethernet & IP headers as well.
 Example: -T 50,60
 -s <srcp>,<dstp>,<tag> prepend dummy SCTP header with specified
 source/destination ports and verification tag (in DECIMAL).
 Automatically prepends Ethernet & IP headers as well.
 Example: -s 30,40,34
 -S <srcp>,<dstp>,<ppi> prepend dummy SCTP header with specified
 source/destination ports and verification tag 0.
 Automatically prepends a dummy SCTP DATA
 chunk header with payload protocol identifier ppi.
 Example: -S 30,40,34
 -P <dissector> prepend EXPORTED_PDU header with specified dissector
 as the payload DISSECTOR_NAME tag.
 Automatically sets link type to Upper PDU Export.
 EXPORTED_PDU payload defaults to "data" otherwise.

Diagnostic output:
 --log-level <level> sets the active log level ("critical", "warning", etc.)
 --log-fatal <level> sets level to abort the program ("critical" or "warning")
 --log-domains <[!]list> comma-separated list of the active log domains
 --log-fatal-domains <list>
 list of domains that cause the program to abort
 --log-debug <[!]list> list of domains with "debug" level
 --log-noisy <[!]list> list of domains with "noisy" level
 --log-file <path> file to output messages to (in addition to stderr)

Miscellaneous:
 -h, --help display this help and exit
 -v, --version print version information and exit
 -q don't report processed packet counts

reordercap: Reorder a capture file

 reordercap lets you reorder a capture file according to the packets
timestamp. For more information on reordercap consult your local
manual page (man reordercap) or
the online version.

Listing 21. Help information available from reordercap
 Reordercap (Wireshark) 4.5.0 (v4.5.0rc0-48-g7b7ca8210417)
Reorder timestamps of input file frames into output file.
See https://www.wireshark.org for more information.

Usage: reordercap [options] <infile> <outfile>

Options:
 -n don't write to output file if the input file is ordered.
 -h, --help display this help and exit.
 -v, --version print version information and exit.

mmdbresolve: Resolve IP geolocation information

 mmdbresolve reads IPv4 and IPv6 addresses on stdin and prints their IP geolocation
information on stdout. For more information on mmdbresolve consult your local
manual page (man mmdbresolve) or
the online version.

Listing 22. Help information available from mmdbresolve
 mmdbresolve (Wireshark) 4.5.0 (v4.5.0rc0-2347-gdf110b8c5e5d)
Read IPv4 and IPv6 addresses on stdin and print their IP geolocation information on stdout.
See https://www.wireshark.org for more information.

Usage: mmdbresolve [-v|-h] -f <dbfile> [-f <dbfile>] ...

Options:
 -v: display version info and exit
 -h: display this help and exit
 -f: path to a MaxMind Database file

This Document’s License (GPL)

This Document’s License (GPL)

 As with the original license and documentation distributed
with Wireshark, this document is covered by the GNU General Public
License (GNU GPL).

If you haven’t read the GPL before, please do so. It
explains all the things that you are allowed to do with this
code and documentation.

 		 GNU GENERAL PUBLIC LICENSE
		 Version 2, June 1991

 Copyright (C) 1989, 1991 Free Software Foundation, Inc.
 <https://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

			 Preamble

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

 To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

 We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

 Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

 Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

 The precise terms and conditions for copying, distribution and
modification follow.

		 GNU GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

 1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

 2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

 a) You must cause the modified files to carry prominent notices
 stating that you changed the files and the date of any change.

 b) You must cause any work that you distribute or publish, that in
 whole or in part contains or is derived from the Program or any
 part thereof, to be licensed as a whole at no charge to all third
 parties under the terms of this License.

 c) If the modified program normally reads commands interactively
 when run, you must cause it, when started running for such
 interactive use in the most ordinary way, to print or display an
 announcement including an appropriate copyright notice and a
 notice that there is no warranty (or else, saying that you provide
 a warranty) and that users may redistribute the program under
 these conditions, and telling the user how to view a copy of this
 License. (Exception: if the Program itself is interactive but
 does not normally print such an announcement, your work based on
 the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

 3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

 a) Accompany it with the complete corresponding machine-readable
 source code, which must be distributed under the terms of Sections
 1 and 2 above on a medium customarily used for software interchange; or,

 b) Accompany it with a written offer, valid for at least three
 years, to give any third party, for a charge no more than your
 cost of physically performing source distribution, a complete
 machine-readable copy of the corresponding source code, to be
 distributed under the terms of Sections 1 and 2 above on a medium
 customarily used for software interchange; or,

 c) Accompany it with the information you received as to the offer
 to distribute corresponding source code. (This alternative is
 allowed only for noncommercial distribution and only if you
 received the program in object code or executable form with such
 an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

 4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

 5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

 6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

 7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

 8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

 9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

 10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

			 NO WARRANTY

 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

		 END OF TERMS AND CONDITIONS

	 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, see <https://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

 Gnomovision version 69, Copyright (C) year name of author
 Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the program
 `Gnomovision' (which makes passes at compilers) written by James Hacker.

 <signature of Moe Ghoul>, 1 April 1989
 Moe Ghoul, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

EPUB/images/ws-save-as-win32.png
M Viresharic Savefile a3

Savein

*

Quick access

Desktop

Libraries.

L}

This PC

@

Network

x

[Temo [<X: N=gi g

Name ° Dstemodifed Tre Size

5 wireshark 20191207220817, 03100 TAROICPM Wiresharkcapture.. 120185K8

Fiename v Sove

Sevesstype: | Wieshaicpdump/..poap (-0 g2 dprcop g2 cap: poap g2 pow) v Cancel
Hep

[Compress with gz

EPUB/images/ws-coloring-rules-dialog.png
800 M Wireshark - Coloring Rules - Default

Name Filter
& Bad TCP tep.analysis.flag
4 HSRP State Change hsrp.state

& Spanning Tree Topology Change stp.type

& OSPF State Change ospf.msg 1= 1
1V}

o ARP arp

v IicmP icmp |

TCP RST tcp.flags.reset eq 1
SCTP ABORT sctp.chunk_type eq ABORT
TTL low or unexpected ip. 24.0.0.0/4 & ip.ttl < 5 & Ipim) || G 224.0.0.0/24 && ip.dst 1= 224.0.0.

Checksum Errors| fes._t X X 1 || tcp.checksum_bad==1 || udp.checksum_bad==1||

v sme smb || nbss || nbns || nbipx || ipxsap || netbios

v HTTP http || tep.port == 80 || http2

v Ipx ipx || spx

v/ DCERPC deerpc

V Routing hsrp || eigrp || ospf || bgp || cdp || vrrp || carp || gvrp || igmp || ismp
v/ TCPSYN/FIN tep.flags & 0x02 || tep.flags.fin

v TP tcp

v uop udp

~4

"Double clck to edit. Drag to move. Rules are processed in order untila match i found.

+|[-]|=m

Help Import. Export. Cancel | [0k

EPUB/images/toolbar/go-first.png

EPUB/images/ws-pref-protocols.png
Columns
Font and Colors
Layout
Capture
Expert
Filter Buttons
Name Resolution

+ Statistics
Advanced

Help.

- Appearance

Wireshark- Preferences

Protocols
Display hidden protocol items
Display byte fields with a space character between bytes
Look for incomplete dissectors
Enable stricter conversation tracking heuristics
Ignore duplicate Frames.

Deinterlacing conversal

nskey NONEV

‘The max number of hashes to keep in memory for determining duplicates frames 10000

cancel

oK

EPUB/images/ws-mate-dns_pane.png
P Frame 1 (71 bytes on wire, 71 bytes captured)
b Bthernet IT, Src: 00:0d:93:c3:lezcs, Dst: 0

0:0c:07:ac:34

b User Datagram Protocol, Src Port: 53143 (53143), Dst Port: 53 (53)
v Domain Name System (query)
Transaction ID: NESEAE
0x0100 (Standard query)
Response: Message is a query

> nate

0000 93 o3 1 o8 08 00 r TE.
0010 0. Xy...de.
0020 00 25 46 do EENAE ANON 00 01 5.8 F

0030 00 00 00 00 00 00 03 77 77 77 03 77 33 63 03 6f
0040 72 67 00 00 01 00 01

EPUB/images/ws-mate-isup_over_mtp3_over_ip.png
Actual Frame

)

RS

S0

adar [addr |

e cpo|

C]|

oo ickon | [cion]

Extracted ISUP PDU #1

Action T, SameeTSUR; Prato-iaus: Srsnsperi-oiod/io
openmtsa.ipe; miprmes.oper ciorisun

Extracted ISUP PDU #2

e

EPUB/images/ws-choose-color-rule.png
® 00 Colors

Ol o =

[Cancel | [0k

EPUB/images/ws-tel-voip-calls.png
Wireshark - VoIP. Calls - SIP_CALL RTP_G711.pcap

Start Time~ Stop Time Initial Speaker From

Protocol Duration Packets State
0.000000 8.524137 200.57.7.195 stel.com:55060> SIP
17.675768 32.833900 200.57.7.202 aaln/1@CPG2
24.665953 24.692752 200.57.7.195

Comments

IN CALL INVITE 200
MGCP 00:00:15 18 RINGING
"“lvan Alizade" <sip...5:55061;user=phone> "francisco@bestel.com" <sip:francisco@bestel.com:55060> SIP

00:00:00 3 CALL SETUP INVITE

"I Limit to display filter Time of Day

Help

Flow Sequence || Prepare Filter |i Play Streams Copy -| % Close

EPUB/images/toolbar/go-jump.png

EPUB/images/ws-flow-graph.png
Wireshark - Flow - SIP_CALL RTP_G711.pcap

200.57.7.195

Time

0.000000
0.007889
0.047524
0.049780
0.050802
0.057528
0.059982
0.063006
0.063097
0.063448
0.068130
0.068208
0.078405
0.250075
0.764810
0.858925
0.892927
0.945583
0.945708
0.945726
1.051214
1.052116
1.208338
1.208703
1.209094
1.209486
1.210121
1.210516

34 nodes, 4,269 items

Limit to display filter
Help

e e RVTESR
060 - Status: 100 Trying |

060 - Status: 180 Ringing |

5002

200.57.7.204

200.57.7.206

200.57.7.197

i i
1219 1219223 [ACKI Seq=1 Ack=1 Win=1.,

e Telnet Data ..

i
5002 - 5001 Len=588

200.57

5010

5010 - 5010 Len=863

5002

.7.194

5001

2428 2434 Len=284

i
2428 - 2424 Len=24

2424 2498 Len=05

|
i
;
i
|
i
|
-
;
i
|

5001
Replace ¢

32801

32801

i
Ack=584 Win..

I
i
i
i
5001 - 5002 Len=607
1
i
11219 - 23 [ACK] Seq

1219

1210 - Telnet Data .. i

e Telnet Data .. i

b i
1210 ;sz - 23 [ACKI Seq=1 Ack=2110 Win. |

110 | Telnet Data . |

i I
1210 ;sz - 23 [ACKI Seq=1 Ack=2166 Win..|

1219 | Telnet Data ..

Flow type: All Flows

32891 [ACK] Seq=1 Ack

23

23
i

23

23
it

23

23
it

23

i
i
2906 -
T

Comment

SIP/SDP: Request: INVITE sip:francisco@bestel.co..
SIP: Status: 100 Trying |

SIP: Status: 180 Ringing |

TCP: 1219 - 23 [ACK] Seq=1 Ack=1 Win=17465 ...
TELNET: Telnet Data ...

UDP: 5002 - 5001 Len=588

UDP: 5010 - 5010 Len=863

UDP: 2428 - 2424 Len=284

UDP: 2428 - 2424 Len=24

UDP: 2424 - 2428 Len=95

UDP: 5001 - 5002 Len=607

SMPP: Replace_sm

TCP: 2906 - 32891 [ACK] Seq=1 Ack=39 Win:

TCP: 1219 - 23 [ACK] Seq=1 Ack=584 Win=1688...
TCP: 4554 - 13840 [SYN] Seq=0 Win=16384 Len...
TCP: 13840 - 4554 [RST, ACK] Seq=1 Ack=1 Win
TELNET: Telnet Data ..

TELNET: Telnet Data ...

TCP: 1219 - 23 [ACK] Seq=1 Ack=2110 Win=175...
TELNET: Telnet Data ...

TCP: 1219 - 23 [ACK] Seq=

TELNET: Telnet Data ...

STP: Conf. Root = 32768/0/00:b0:64:10:84:40

STP: Conf. Root = 32768/0/00:b0:64:10:84:40

STP: Conf. Root = 32768/0/00:b0:64:10:84:40

STP: Conf. Root = 32768/0/00:b0:64:10:84:40

STP: Conf. Root = 32768/0/00:b0:64:10:84:40

STP: Conf. Root = 32768/0/00:b0:64:10:84:40

Addresses: | Any

Reset Diagram || Export

EPUB/images/ws-find-packet.png
[JON] M odd-http.pcap

AN 40 mITRE QesEF IS = Q Q F

(W] Apply a display filter ... <38/> =3 ~| Expression... +

Packet list < Narrow & Wide < Case sensitive Display filter

(o}

tcp Cancel
No. Time Source Destination Protocol Length Info
- 1 0.000000 200.121.1.131 172.16.0.122 TCP 1454 10554 - 80 [ACK] Seq=1 Ack=1 Win=65535 Len!

EPUB/images/ws-rlc-graph.png
Sequence Number

Hover over the sraph fordeals.
Mouse © drags zooms.

EX 58z Ex
Time

Reset | swikch Direction

Oclose |[Dsaveas...|

EPUB/images/ws-goto-packet.png
M odd-http.pcap

d@e mNRRE QAe»EHF &5

| Q| F

Apply a display filter ... <8/>

= 'I Expression... +

Time Source
1 0.000000 200.121.1.131

Destination
172.16.0.122

Protocol Length
TCP

Packet: 42 Go to packet Cancel
Info

1454 10554 - 80 [ACK] Seq=1 Ack=1 Win=65535 Len==—=

EPUB/images/ws-tel-rtp-player_2.png
Wireshark - RTP Player

0 10 20 30 40 50 60

Play Source Address Source Port Destination Address Destination Port SSRC Setup Frame - Packets Time Span (s) SR (Hz) PR (Hz) Payloads
Muted]10.0.2.15 18180 10.0.2.20 6000 0x043dadd6 SETUP 867 425 17.25-25.73 (8.48) 8000 8000 G726-32
Muted 110.0.2.15 31690 10.0.2.20 6000 0x043ffa6e SETUP 1300 425 25.86-34.34 (8.48) 8000 8000 G726-40
R 10.0.2.15 22606 10.0.2.20 6000 0x043da... SETUP 1733 425 34.47 - 42.95 (8.48) 8000 8000 AAL2-G7.
10.0.2.15 23040 10.0.2.20 6000 0x043ffa7f SETUP 2166 43.08-51.56 (8.48) 8000 8000
10.0.2.15 27442 10.0.2.20 6000 0x043dadf8 SETUP 2599 51.69 - 60.17 (8.48) 8000 8000

L 10.0.2.15 16984 10.0.2.20 6000 0x043ffa91 SETUP 3032 60.31 - 68.79 (8.48) 8000 8000 AAL2-G72...
Start: 0.022520 s, cursor: 41.566453 s. Press "G" to go to packet 2092. Double click to set start of playback.

L = [w| Minsilence: 2 || Output Device: |default

~ | Output Audio Rate: | Automatic ~ |

Jitter Buffer: |50 Playback Timing: |itter Buffer [Time of Day

Help

Inaudible streams |- | Analyze Prepare Filter || Export -| x Close

EPUB/images/ws-tel-rtp-player_3.png
Out of Sequence
Jitter Drops

Wrong Timestamps
Inserted Silence

18 6

18 8

EPUB/images/ws-tel-rtp-player_1.png
Wireshark - RTP Player.

10

20 30 40

Source Address ~ Source Port Destination Address Destination Port SSRC Setup Frame

50 60

Time Span (s) SR (Hz)

PR (Hz) Payloads

0.0.2.15
.0.2.15
.0.2.15
.0.2.15

10.0.2.15
10.0.2.15
10.0.2.15

28354
31690
23040
16984

18180
22606
27442

10.0.2.20 6000 0x043ffa5d SETUP 434

10.0.2.20 6000 0x043ffabe SETUP 1300
10.0.2.20 6000 0x043ffa7f SETUP 2166
10.0.2.20 6000 0x043ffa91 SETUP 3032

10.0.2.20 6000 0x043da9d6 SETUP 867
10.0.2.20 6000 0x043da9e7 SETUP 1733
10.0.2.20 6000 0x043da9f8 SETUP 2599

Start: 0.022520 s. Double click to set start of playback.

8.64 - 17.12 (8.48) 8000
25.86 - 34.34 (8.48) 8000
43.08 - 51.56 (8.48) 8000
60.31 - 68.79 (8.48) 8000

17.25 - 25.73 (8.48) 8000
34.47 - 42.95 (8.48) 8000
51.69 - 60.17 (8.48) 8000

(2] [t]

Min silence: |2

</ Output Device: default

Jitter Buff® |50

Playback Timing: Time of Day

| Inaudible streams

8000
8000
8000
8000

8000
8000
8000

G726-24
G726-40
AAL2-G72...
AAL2-G72...

G726-32
AAL2-G7
AAL2-G7

~ | Output Audio Rate: Automatic - |

se |

EPUB/images/ws-main-toolbar.png
(m 4@ I RGO Rex>=F § =

QQ Q M fp

EPUB/images/ws-details-pane.png
Cv vy

Ethernet I, Src: Globalsc_6e: (fo:ad:de:), Dst: Vizio_14:
Internet Protocol Version 4, Src: 192.168.6.1, Dst: 192.168.6.21
User Datagram Protocol, Src Port: 53 (53), Dst Port: 34036 (34036)
Domain Name System (response)

[Request In: 1.

[Tine: 0.055330000 seconds]

Transaction ID: ex4e3d
> Flags: exslse Standard query response, No error
Questions: 1
Answer RRs: 2
Authority RRs: &
Additional RRs: &
Queries
Answers
Authoritative nameservers
Additional records

el (00:19:9d:14:

EPUB/images/ws-statusbar-filter.png
0 7 "I=" may have unexpected results (see the User's Guide) Packets: 500 - Displayed: 500 (100.0%) - Load time: 0:0.28 Profile: Default

EPUB/images/ws-packet-selected.png
M odd-http.pcap - X

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

a ® RE Res=Fs5Eaaan
|I|Applya display filter ... <Ctrl-/> a v| Expression... +
No. Time Source Destination Protocol Length Info

4 0.025749 172.16.0.122 200.121.1.131 TCP 54 [TCP Window Update] [TCP ACKed unseen segment] 80 - 10554 [ACK] Seg-=.

5 0.076967 41221 3L, LERL .16.0.122 Previous segment not captured] [TCP Spurious Retransmission] 10.

6 0.076978 .16.0.122 .121.1.131 Dup ACK 2#1] [TCP ACKed unseen segment] 80 - 10554 [ACK]

7 0.102939 41221 3L, LERL .16.0.122 Spurious Retransmission] 10554 -» 80 [ACK] Seq=5601 Ack=1

8 0.102946 .16.0.122 .121.1.131 Dup ACK 2#2] [TCP ACKed unseen segment] 80 - 10554 [ACK]

9 0.128285 41221 3L, LERL .16.0.122 Spurious Retransmission] 10554 -» 80 [ACK] Seq=7001 Ack=1
0.128319 .16.0.122 .121.1.131 Dup ACK 2#3] [TCP ACKed unseen segment] 80 - 10554 [ACK]
0.154162 41221 3L, LERL .16.0.122 Spurious Retransmission] 10554 -» 80 [ACK] Seq=8401 Ack=1
0.154169 .16.0.122 .121.1.131 Dup ACK 2#4] [TCP ACKed unseen segment] 80 - 10554 [ACK]
0.179906 41221 3L, LERL .16.0.122 Spurious Retransmission] 10554 -» 80 [ACK] Seq=9801 Ack=1
0.179915 .16.0.122 .121.1.131 Dup ACK 2#5] 80 - 10554 [ACK] Seq=1 Ack=11201 Win=63000 Len=0
0.207145 .121.1.131 .16.0.122 10554 > 80 Seq=11201 Ack=1 Win=65535 Len=1400 [TCP segment of ..
0.207156 .16.0.122 .121.1.131 80 - 10554 Seq=1 Ack=12601 Win=63000 Len=0
0.232621 .121.1.131 .16.0.122 10554 > 80 Seq=12601 Ack=1 Win=65535 Len=1400 [TCP segment of ..
0.232629 .16.0.122 .121.1.131 80 - 10554 Seq=1 Ack=14001 Win=63000 Len=0
0.258365 .121.1.131 .16.0.122 10554 > 80 Seq=14001 Ack=1 Win=65535 Len=1400 [TCP segment of ..
0.258373 .16.0.122 .121.1.131 80 - 10554 Seq=1 Ack=15401 Win=63000 Len=0

Frame 15: 1454 bytes on wire (11632 bits), 1454 bytes captured (11632 bits) ~
Ethernet II, Src: Vmware_c0:00:01 (00:50:56:c0:00:01), Dst: Vmware_42:12:13 (00:0c:29:42:12:13)
Internet Protocol Version 4, Src: 200.121.1.131, Dst: 172.16.0.122
v Transmission Control Protocol, Src Port: 10554, Dst Port: 80, Seq: 11201, Ack: 1, Len: 1400
Source Port: 10554
Destination Port: 80
[Stream index: 0]
[TCP Segment Len: 1400]
Sequence number: 11201 (relative sequence number)
[Next sequence number: 12601 (relative sequence number)]
Acknowledgment number: 1 (relative ack number)
0101 = Header Length: 20 bytes (5)

0020 00 7a @0 50 a7 5c 30 @8 e2 e2 ee bf 50 10 -zJH-P-\ @ P ~
£f £f bc 5Se 08 00 42 4f 78 42 56 35 6a 45 52 52 ~..BO XBV5JERR
71 5a 69 63 39 34 54 77 48 4c 71 46 51 34 78 35 qZic94Tw HLQFQ4X5
61 62 46 30 77 55 6e 59 73 46 2b 67 6c 44 47 4c abFewUnY sF+glDGL
33 56 75 35 65 61 33 4d 44 59 77 49 70 63 32 44 3VuSea3M DYwIpc2D
78 4c 44 4d 74 38 6b 2f 75 42 68 38 6a 48 6d 30 xLDMt8k/ uBh8jHmO
63 66 54 63 69 35 6a 77 77 4c 2f 56 4c 6F 6¢c 41 cfTci5jw wL/VLolA
57 4c 6¢c 35 63 43 79 4e 6d 63 36 52 70 58 57 7a WL15CCYN mc6RpXWz

O z Acknowledgment number (tcp.ack), 4 bytes Packets: 3083 - Displayed: 3083 (100.0%) Profile: Default

EPUB/images/toolbar/filter-toolbar-input.png
fra

EPUB/images/toolbar/filter-toolbar-add.png

EPUB/images/ws-capture-interfaces-main-macos.png
Capture

...using this filter: |I |Enter a capture filter ... v | All interfaces shown .

Thunderbolt Bridge: bridge0
utun0
utuni
Thunderbolt 1: en2
Thunderbolt 2: en3
Loopback: 1o0 MA M A A
Wi-Fi: en1
gif0
stfo
p2p0
ENel[o]
XHC20

@ Cisco remote capture: ciscodump

@ Random packet generator: randpkt

@® SSH remote capture: sshdump

@ UDP Listener remote capture: udpdump

EPUB/images/ws-open-win32.png
M Vireshark: Open Capture File

Lock n

*

Quick access

Desktop

Libraries.

L}

This PC

@

Network

X
e] es e E
Name . Date modified Type Size. ~
B toreas S208HPM Wirshork copurefile w2
B spache-rdivs </e72002 512PM Vireshark copure il e
B osus-cesetup JNTISBAM Winesharkcopturefie 2706K8
2 buidoct SNYTAPM Wiesharkcopturefie 1483K8
2 cabelos-home /202001 72PM Wiresherk capture fle uie
B doma SIBTMPM Vireshork copture il ke
B comeast bterst TOTHIGPM Wieshark copturefie 117.924K8
B comeast btest T/0207520PM Wireshark copturefie 117.923K8
B comcast bad-dhcp U2NGIIPM Wirshark capture il ke
B dissectorbug 242B2T2PM Vireshork copture il 9
2 dnpta 87172004902 AM Vireshark copure il ke
2 ans 1061959 554PM Wiresherk capture fle 26
B dos-2013-06:19 GEABATIM Wireshorkcopturefie 0795K8 v
File name: | comcast-bad-dhcp. ~ Open
Fesciupe: ARl S =
Help
Readfter [Fomst WieshaAcodump/..-pop
= 1268, 113t records

Automaticaly detect ie type.

Start /elapsed: 2011-03:26 18:10:11/ 0000:41

EPUB/images/ws-tls-session-keys.png
Wireshark - Export TLS Session Keys (8 keys)

Tags:

Where:m Winesharictutoral-on-decr.. 3
TLS Session Keys (keys i) $

Sl e

EPUB/images/ws-display-filter-tcp.png
14l test. pcap - Wireshark

Fle Edt Vew Go Caphwe fnalyze Statitics Hep

-) o8B «»»7F ¢ /EE &a

er: [0 . €0

No.- | Tme Source Destination Protocdl | Info
12 1.227262 http » 3196 [SYN, ACK] Se
13 Iizeriss 16800 16800 3136 5 http [ACK] Se
14 Tizrast 16800 16800 SUBSCRTBE /upnp/servi ce,/Layer3For
35 10229303 168.0. 168.0. nictp > 3195 [ACK] Seq=1 Ack=256 W

248355
~248391
L250171
“250285
1250810
“250842
-251568
‘252826
Las3323
L25as02
L2sas3z

1025 > 5000 [SYN]
5000 > 1025 [SYN,
HTTP/1.0 200 0K

3196 > http [FIN,
http > 3196 [FIN,
3196 > http [ACK]
1025 > 5000 [ACK]
http > 3196 [FIN,
3197 > http [S]
http > 3197 [sN,
3197 > http [ACK]

Frame 11 (62 bytes on wire, 62 bytes captured)

Ethernet II, Src: 192.168.0.2 (00:0b:5d:20:cd:02), Dst: Netgear_2d:75:9a (00:08

Internet Protocol, Src: 192.168.0.2 (192.168.0.2), Dst: 192.168.0.1 (192.168.0.1)
Transmission Control Protocol, Src Port: 3196 (3196), Dst Port: http (80), Seq: 0, Len: O

0003 55 29 75 33 00 0F 53 20 cJ 02 08 00 45 00
00 30 18 45 40 00 50 06 61 2c cO a 00 02 0 a
00 01 Oc 7c 00 50 3c 36 95 5 00 00 00 00 70 02
Fa f0 27 20 00 00 02 04 05 bd 01 01 04 02

[Fie: "0rieest peap” 14 K 0000102 [1205+ 103 1 0 [Experts mr]

EPUB/images/ws-pref-capture.png
M Vireshark Preferences

~ Appearance
Columns.
Font and Colors
Layout
Capture
Expert
Fiter Buttons
Name Resolution
> Protocols
RSAKeys
> Statistics
Advanced

Defautt interface

Capture packets in promiscuous mode
Capture packets in pcapng format

Update lst of packets in real time.

[P

Automatic scrolling inlive capture

Don'tload

terfaces on startup

Disable external capture interfaces

EPUB/images/related-first.png

EPUB/images/ws-stats-hierarchy.png
Wireshark - Protocol Hierarchy Statistics - git_smart.pcapng

Protocol ~ Percent Packets Packets | Percent Bytes Bytes Bits/s EndPackets EndBytes EndBits/s PDUs
~ Frame 1 100.0 1413 100.0 717001 39k 0 0 0 1413
~ Linux cooked-mode capture 100.0 1413 32 22608 1242 0 0 0 1413
~ Internet Protocol Version 4 100.0 1413 3.9 28260 1553 0 0 0 1413
- User Datagram Protocol 64 o1 01 728 40 0 0 0 o1
Domain Name System 64 20 0.9 6378 350 90 6378 350 20
Data 01 1 0.0 31 1 1 31 1 1
- Transmission Control Protocol 933 1319 919 658589 36k 960 338701 18k 1319
Transport Layer Security 9.0 127 15.4 170215 6,059 127 83785 4,606 134
~ Hypertext Transfer Protocol 5.0 70 409 293086 16k 39 15325 842 70
Online Certificate Status Protocol 0.6 8 10 7031 386 8 8629 474 8
Media Type 01 1 0.0 282 15 1 282 15
Line-based text data 08 2 639 458331 25k 12 226139 12k 2
JPEG File Interchange Format 04 6 91 65439 3,507 6 67006 3,683 6
eXtensible Markup Language 0.2 3 497 356175 19k 3 33811 1,858 3
Compuserve GIF 01 1 0.0 43 2 1 43 2 1
Git Smart Protocol ns 162 314 225057 12k 162 33299 1830 3142
~ Internet Control Message Protocol 0.2 3 01 407 2 0 0 0 3
Domain Name System 0.2 3 0.0 299 16 3 299 16 3
No display filtr.

Help Copy | Close

EPUB/images/toolbar/x-capture-file-close.png

EPUB/images/ws-statusbar-loaded.png
0 & 6tod-regs Packets: 500 - Displayed: 500 (100.0%) - Load time: 0:0.21 Profile: Default

EPUB/images/ws-bytes-pane-popup-menu.png
M odd-http.pcap - X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

AW I @® REB ARex=2F 5 =EQQAQEHE
| |App|ya display filter ... <Ctrl-/> v| Expression... +
No. Time Source Destination Protocol Length Info

172.16.0.122 TCP 1454 10554 - 80 [ACK] Seq=1 Ack=1 Win=65535 Len=1400 [TCP segment of a reassembled PDU]

1 0.000000 200.121.1.131

4 0.025749 172.16.0.122 200.121.1.131 TCP 54 [TCP Window Update] [TCP ACKed unseen segment] 80 - 10554 [ACK] Seq=1 Ack=11201 Win
5 0.076967 200.121.1.131 172.16.0.122 TCP 1454 [TCP Previous segment not captured] [TCP Spurious Retransmission] 10554 -» 80 [ACK]

5 0.207145 200.121.1.131 172.16.0.122 TCP 1454 10554 - 80 [ACK] Seq=11201 Ack=1 Win=65535 Len=1400 [TCP segment of a reassembled PDl——

6 0.207156 172.16.0.122 200.121.1.131 TCP 54 80 - 10554 [ACK] Seq=1 Ack=12601 Win=63000 Len=0 "
. o o B R _ B oL R [[- —

Flags: 0x010 (ACK) ~

Window size value: 65535

Calculated window size: 65535] Corpy Biies &s Iitene +» Sl DU

Window size scaling factor: -1 (unknown)] -as Hex Dump
Checksum: 0x@a49 [unverified] ...as Printable Text
Checksum Status: Unverified] ...as a Hex Stream

Urgent pointer: @ ...as Raw Binary

SEQ/ACK analysis] ...as Escaped String
Timestamps]

CP payload (1400 bytes) ® Show bytes as hexadecimal
Reassembled PDU in frame: 19] ...as bits

9 segusit deE (B BEes) ® Show text based on packet

0030 ff ff Ga 49 00 00 ... 1P ..as ASCII A
0040

P ..as EBCDIC
0060
0070
0080
0090
0020 .

. 7 Adata segment used in reassembly of a lower-level protocol (tcp.segment_data), 1400 bytes Packets: 3083 - Displayed: 3083 (100.0%) Profile: Default

EPUB/images/ws-csp-statistics.png
Wireshark - ComponentStatusProtocol Statistics - test.pcap

ComponentStatusProtocol Message Type~ Messages Messages Share (%) Bytes (B) Bytes Share (%) FirstSeen(s) LastSeen(s) Interval(s) Message Rate (Msg/s) Byte Rate (B/s)
ComponentStatus Report 624 100.000000 227640 100.000000 0.000000 52.205522 52.205522 11.952759 4360.458267

Display filter: Apply
Copy Saveas... ©Lukk

EPUB/images/ws-wireless-key-type.png
M WEP and WPA Decryption Keys

Keytype Key

‘Copy from

11 ey

EPUB/images/ws-ssp-statistics.png
Wireshark - ScriptingServiceProtocol Statistics - ssp.pcap

ScriptingServiceProtocol Message Type Messages ~ Messages Share (%) Bytes (B) Bytes Share (%) First Seen(s) LastSeen(s) Interval(s) Message Rate (Msg/s) Byte Rate (B/s)
Upload 10 25.641026 27520 85.022244 13.233614 41.983980 28.750366 0.347822 957.205206
Status 6 15.384615 48 0.148295 13.444835 52.987548 39.542713 0.151735 1.213877
Environment 6 15.384615 144 0.444884 13.233353 41.983924 28.750571 0.208692 5.008596
Keep-Alive Ack 5 12.820513 28 0.086505 13.652381 51.989246 38.336865 0.130423 0.730367
Keep-Alive 5 12.820513 20 0.061789 13.652236 51.989042 38.336806 0.130423 0.521692
Download 4 10.256410 4572 14.125062 24.457283 52.998223 28.540940 0.140150 160.190940
Ready 3 7.692308 36 0.111221 13.233097 41.982252 28.749155 0.104351 1.252211
Not Ready 0 0.000000 0 0.000000
Display filter: Apply

Copy Saveas... ©Lukk
T —

EPUB/images/ws-statusbar-empty.png
Ready to load or capture No Packets Profile: Default

EPUB/images/toolbar/filter-toolbar-apply.png

EPUB/images/ws-mate-analysis.png
v)

' '

! Add the Pdu to '

' the existing Gop

' '

' '

' '

' '

LN Creato a now '

L Can this Pdu ' >/ Gopwihihis L

1 start a now Gop?, i 1

' '

' '

Y |
R
! 1
! 1
! 1
! 1
! 1
L] Do Gog '
T Postanalysis 1
! 1
! 1
! 1
! 1
! 1
t '

EPUB/images/toolbar/x-capture-options.png

EPUB/images/ws-enrp-statistics.png
2 Wireshark - ENRP Statistics - fgp.pcap VoA

NetPerfMeter Message Type Messages Messages Share (%) Bytes (B) Bytes Share (%) ~ First Seen(s) LastSeen (s) Interval(s) Message Rate (Msg/s) Byte Rate (B/s)
ENRP Handle Update 49.090909 50.485094 5.004701 133.568659 128.563958 0.840049 178.090348
ENRP Presence 108 49.090909 22248 49.0562715.001555 133.554520 128.552965 0.840121 173.064853
ENRP List Response 2 0.909091 184 0.405715 5.002245 5.002260 0.000015 133333.333338 12266666.667131
ENRP List Request 2 0.909091 24 0.0529195.001923 5.002069 0.000146 13698.630137 164383.561644
ENRP Takeover Server 0 0.000000 0 0.000000
ENRP Init Takeover Ack 0 0.000000 0 0.000000
ENRP Init Takeover 0 0.000000 0 0.000000
ENRP Handle Table Response 0 0.000000 0 0.000000
ENRP Handle Table Request 0 0.000000 0 0.000000
ENRP Error 0 0.000000 0 0.000000
Display filter: Apply|
‘ Copy ‘ ‘ Save as... ‘ ‘0 Lukk‘

EPUB/images/ws-stats-lte-mac-traffic.png
Wireshark - 3GPP Mac Statistics (3 UEs, 258 frames) - lte_and_nrout

" ccor icbiiopz iobs los oos obe oo licbs ops opto b obs | icbad icbas ib3s ioba7ia0ss
e s o014 Seoboror. 5w b ST aor Cee o g
LR i BT - o 9 e = B
3308 ik FEA - K WP ke T H
B oM TR B 5 H B B B H H o o o o o
A I H 2 H H H H H H I S S S
G . — g £ g g g g g g
[p———— e ———
syatem e
Srtam brosdcast iosed prasrtein
Ho AR frames (3 RARS)
Pesin Peheo (0 yres 0109
Display e Entee = sy Fer ey |
Orelp

EPUB/images/toolbar/zoom-original.png

EPUB/images/ws-tel-rtp-player_button.png
I Play Streams |~
Set playlist
Add to playlist

Remove from playlist

EPUB/images/ws-file-menu.png
M od-htp.peap - o x
File | Edit View Go Capture Anclyze Stafistics Telephony Wireless Tools Help
Open Ctri0. EF L= aqan
Open Recent » 3 - Eresson... +
Merge. ration Prowcol Length Info
Import from Hex Dume. 16.0.122 TCP 1454 [TCP segrent of a reassenbled PDU]
Close Ctrew
16.0.122 TP 1454 [TCP segment of a reassenbled POU]
Save Ctrles 1211131 TCP 54 [TCP Window Update] [TCP ACKed unseen s.4 [ACK] Seq=1 Ack=11201 Win=63000 Len=3
Save As. Cri+Shift-5
File Set » l16.0.022 Tep 1454 [TCP segrent of a reassembled PDU]
Export Specified Packets 160122 TCP 1454 [TCP segrent of a reassembled PDU]
Export Packet Dissections »
160122 TCP 1454 [TCP segrent of a reassenbled PDU]
Export Packet Bytes. CtrieH
Export PDUSto File. 16.0.122 TCP 1454 [TCP segrent of a reassenbled PDU]
Export SSL Session Keys v
Export Objects » fts), 1454 bytes captured (11632 bits)
1), Dst: Vmare_42:12:13 (00:0c:29:42:12:13)
o G 1121.1.131, Dst: 172.16.0.122
rt: 10554 (10554), Dst Port: 80 (80), Seq: 1, Ack: 1, Len: 1400
Quit cul-Q — SEalEe
@0 0c 25 42 12 13 @0 50 56 c0 00 01 08 60 45 00 ..)B ~
@5 20 01 41 00 00 62 05 d3 90 <8 79 @1 83 ac 10 ...A..j. ...y..
00 7a 29 32 00 50 a7 Sc 04 43 €2 €2 ee b 50 10 .z):.P.\ .H....P.
#f £f 7767 00 80 30 54 73 57 77 51 74 45 79 4e ..wg..OT SWQLEYN
45 6133 78 70 74 44 63 51 4F 2f 6b 75 31 41 52 EadxptDc QO/KuLAR
5266 47 59 67 53 32 41 34 47 59 35 31 56 33 32 RFGYES2A 46YS1V32 .

kS

Packets: 3083 - Displayed: 3083 (100.0%) - Load tme: 0:0. 100

Profie: Default

EPUB/images/ws-filter-macros.png
o Wireshark -

MacroName ~ Macro Expression
private_ethernet $1(0] & 0XOF == 2
private i $1==192.168.0.0/16 or $1 == 172.16.0.0/12 or $1 == 10.0.0.0/8
private ipve ipv6 and $1

+| =)= /home/jpvt.config/wireshark/dmacros
@rep | [@cancel || Pox

EPUB/images/related-other.png

EPUB/images/toolbar/edit-find.png

EPUB/images/toolbar/go-previous.png

EPUB/images/ws-file-set-dialog.png
M Vireshark .8 Files in Set

Filename
test_ 00001_20230804190750.peapng.
test_00002_20230804190757.peapng.
test_00003_20230804190804.peapng.
test_ 00004 2023080419081 peapng.
test_00005_20230804190818.peapng.
test_00006_20230804190826.peapng.
test_00007_20230804190833 peapng.
test_00008_20230804190840.peapng.

2023-08-04 19:08:04
2023-08-04 190811
2023-08-04 190818
2023-08-04 19:08:26
2023-08-04 19:08:33
2023-08-04 19:08:40

Modified
2023-08-04 1907:57
2023-08-04 19:08:04
2023-08-04 190811
2023-08-04 190818
2023-08-04 19:08:26
2023-08-04 19:08:33
2023-08-04 19:08:40
2023-08-04 10:08:44

Size

360kB]
24848]
12348
105 kB
100 kB
95k8
185 kB
124 kB

Directory: CA\Captures

EPUB/images/ws-stats-wlan-traffic.png
WLAN Traffic Statistics

Bssip Channel | SSID .. Beacons | Data Packets | Probe Req | Probe Resp | Auth | Deauth | Other | Percent | Protection
00:13:1a:20:12:c0 0 se 0 o o 0o 0 o00a%
00:02:e3:46:99:f8 11 AMX 744 5 0 w0 0 0 046% WEP
00:0e:2e:c2:15:07 1 Fortress GB 13 0 0 o o 0 0 o00w%

[Name resolution & Only show existing networks

EPUB/images/ws-tel-rtp-streams.png
Source Address ~ Source Port Destination Address Destination Port SSRC Start Time Duration Payload Packets Lost Max Delta (ms) Max Jitter Mean Jitter Status

192.168.105.172 4376 192.168.105.110 4376 0x5711bf84 76.878653 19.95 g711A, telephone-event 666 0(0.0%) 30.068000 15.766985 0.008679

2 streams, 1 selected, 665 total packets. Right-click for more options.

Limit to display filter ~ Time of Day

Help Find Reverse |- | Analyze ||| Prepare Filter | i Play Streams |-/| Copy -|| Export || x Close

EPUB/images/ws-sctp-1-association.png
® @® ® SCTP Analyse Association: frame31.cap Port1 3869 Port2 3868

_ Endpoint1 Endpoint 2

Checksum Type: UNKNOW
Number of Data Chunks from EP1to EP2: 3
Number of Data Bytes from EP1to EP2: 1332
Number of Data Chunks from EP2 to EP1: 0

Number of Data Bytes from EP2toEP1: 0

® @® ® SCTP Analyse Association: frame31.cap Port1 3869 Port2 3868

Statistics _ Endpoint 2

List of used IP-Addresses

172.28.22.2
Port: 3869
Sent Verification Tag: 0x334d9d03
Used Number of Inbound Streams: (0]
Used Number of Outbound Streams: 1

Chunk Statistics Filter Association Close

Graph TSN Graph Bytes _ Close

EPUB/images/related-segment.png

EPUB/images/ws-statusbar-selected.png
0 7 Source IPv6 Address (ipvé.src), 16 bytes Packets: 500 - Displayed: 500 (100.0%) - Load time: 0:0.28 Profile: Default

EPUB/images/ws-enabled-protocols.png
M Vireshark . Enabled Protocols

Description
EC 60870-5-104-Apci

EC 60870-5-104-Asdlu

‘29West Protocol

Pro-MPEG Code of Practice #3 release 2 FEC Protocol
3Com XN Encapsulation

3GPP2ATI

1PV over Low power Wireless Personal Area Networks
SLOWPAN over [EEE 802154

802,11 radio information

EEE 802,11 Radiotap Capture header

EEE 802,11 RSNA EAPOL key

Slow Protocols

21 Protocol
AVTP Audio Format

ATM AALT

ATM AAL/A

Appletalk Address Resolution Protocol
Aastra Signalling Protocol

‘Application Configuration Access Protocol
Architecture for Control Networks

ACN over UDP

ACP133 Attribute Syntaxes

Advanced Card Systems ACR122

150 8650-1 05 Association Control Service.
AudioCodes Trunk Trace

Android Debug Bridae.

Enable Al

Disable Al

EPUB/images/ws-menu.png
File

Edit

View Go

Capture

Analyze

Statistics

Telephony Wireless

Tools

Help

EPUB/images/ws-capture-menu.png
M odd-nttppcap
Fle Edt View Go | Capture| Anslyze Stotsics Telephony Wireless Tooks Help

aAm ® || M@ options. CtrleK QR
Thooly 2 dplay s M Stat [3) ooresson.._ +
B stop Ctri+E Protocol Length Info
Restart cuier | e 1454 [TCP segnent of a reassembled PDU]
Capture Fiters,
se.casme 26 ot FS G 1454 [TCP segnent of a reassembled PDU]
40.025749 17 S TcP. 54 [TCP Window Update] [TCP ACKed unseen s.4 [ACK] Seq=1 Ack=11201 Win=63000 Len=0
70102939 200.121.1.131 _ 172.16.0.122 ___TCP 1454 [TCP segnent of a reassembled PDU]
50.128285 200.121.1.131 172.16.0.122 _TCP 1454 [TCP segnent of a reassembled PDU]
110154162 200.121.1.131 172.15.0.122 __TCP 1454 [TCP segnent of a reassembled PDU]
13 0.179906 200.121.1.131 172.15.0.122 _TCP 1454 [TCP segnent of a reassembled PDU]
Frame 1: 1454 bytes on wire (11632 bits), 1454 bytes captured (11632 bits)
Ethernet II, Src: Vmare_c0:00:01 (00: 1), Dst: Vmare_42:12:13 (80:0c:29:42:12:13)
Internet Protocol Version 4, Src: 200.121.1.131, Dst: 172.15.0.122
Transmission Control Protocol, Src Port: 10554 (18554), Dst Port: 50 (30), Seq: 1, Ack: 1, Len: 1400
@0 6c 29 42 12 13 00 50 56 <0 00 6L 65 00 45 00 ..)B -
©5 20 0L 41 00 00 62 05 d3 90 B 79 BL 83 ac 10 ...A..3. ...y..
90 72 29 3a 00 50 a7 Sc 04 43 €2 22 ee b 50 10 .1):.P.\ H....P.
£F £F 77 67 00 00 30 54 73 57 77 5174 45 79 de ..ug..0T SWQEEYN
456133 78 70 74 44 63 51 4F 2 Gb 75 31 41 52 EadxptDe QU/KULAR
52066 47 59 6753 32 41 34 47 59 35 31 56 33 32 RFGYES2A 4GYSIV32 .

Q7 Packets: 3083 - Displayed: 3083 (100.0%) - Load tme: 0:0.100 || Profile: Default

EPUB/images/ws-stats-lte-rlc-traffic.png
‘Wireshark - LTE RLC Statistics (2 UEs, 56 frames) - lte_and_nr,out - B x

Name ~Mode priority ULFrames ULBytes ULMB/s ULACKs ULNACKs ULMissing DLFrames OLBytes DLMB/s DLACKs DLNACKs _DLMissing
sue 7 125 0000252941 7 o o 16 1052 000208627 & o o

Launch UL Graph| |Launch DL Graph| | include SR frames n filter Include RACH frames inFilter . Use RLC frames only from MAC frames
Oisplay fiters | Enter = diplay iter
Orep | | copy |

EPUB/images/ws-pref-appearance-layout.png
M Vireshark Preferences

~ Appearance

Columns.
Font and Colors
Layout

Capture

Expert

Fiter Buttons

Name Resolution

Protocols

RSAKeys

Statistics

Advanced

1 T e T,
5 AR B P
Pane 1 Pane 2 Pane 3
® packetList O packetList O packetList
O packet Detais ® Packet Deta O packet Detais
O packet Bytes O packet Bytes ® packet Bytes
O packet Disgram O packet Disgram O packet Disgram
O None O None O Nene

Packet it setings:
1 Show pcket separstor
Show column definiton in column context menu

Allow the st to be sorted

Maximum number of cached rows (affects sorting)

Enable mouse-over colorization

Stotus Bar settings:
01 Show selected packet number
1 Show il load time

10000

EPUB/images/toolbar/filter-toolbar-bookmark.png

EPUB/images/ws-mate-pdu_analysis.png
Mark GoPas.
siopped

analze GoP.

v
Leave Anaisys

EPUB/images/ws-column-header-popup-menu.png
M odd-http.pcap - X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Am @ 1 RO Rex=ZP § T =EQAQAQHE

A

|l |Apply a display filter ... <Ctrl-/> a v| Expression... +
No. Time Source Destination T A
4 0.025749 172.16.0.122 200.121.1.13! g L ndow Update] [TCP ACKed unseen segment] 80 - 10554 [ACK] Seq=1 Ack=11201 Win=¢
Align Center
Align Right

Column Preferences...
Edit Column

Resize To Contents
Resolve Names
v No.
v Time
0.207145 .121.1.131 172.16.0.122 Y Source 80 [ACK] Seq=11201 Ack=1 Win=65535 Len=140@ [TCP segment of a reassembled PDL——
16 0.207156 172.16.0.122 200.121.1.13; ¥ Destination 9554 [ACK] Seq=1 Ack=12601 Win=63000 Len=0 —
17 0.232621 200.121.1.131 172.16.0.122 Protocol » 80 [ACK] Seq=12601 Ack=1 Win=65535 Len=1400 [TCP segment of a reassembled PDL
18 0.232629 172.16.0.122 200.121.1.137| v Length 9554 [ACK] Seq=1 Ack=14001 Win=63000 Len=0 —
19 0.258365 200.121.1.131 172.16.0.122 « Info » 80 [ACK] Seq=14001 Ack=1 Win=65535 Len=1400 [TCP segment of a reassembled PDL "
< Remove This Column >
Frame 15: 1454 bytes on wire (11632 bits), 1454 bytes captured (11632 bits) ~
Ethernet II, Src: Vmware_c0:00:01 (00:50:56:c0:00:01), Dst: Vmware_42:12:13 (00:0c:29:42:12:13)
Internet Protocol Version 4, Src: 200.121.1.131, Dst: 172.16.0.122
v Transmission Control Protocol, Src Port: 10554, Dst Port: 80, Seq: 11201, Ack: 1, Len: 1400

Source Port: 10554

Destination Port: 80

[Stream index: @]

[TCP Segment Len: 1400]

Sequence number: 11201 (relative sequence number)

[Next sequence number: 12601 (relative sequence number)]
Acknowledgment number: 1 (relative ack number)

0101 = Header Length: 20 bytes (5)

0020 00 7a PEBEE 00 50 a7 5c 30 08 €2 e2 ee bf 50 10 -ZJH-P-\ @ 3 ~
ff £f bc 5e 00 @0 42 4f 78 42 56 35 6a 45 52 52 ~..BO XBV5JERR
71 5a 69 63 39 34 54 77 48 4c 71 46 51 34 78 35 qZic94Tw HLQFQ4x5
61 62 46 30 77 55 6e 59 73 46 2b 67 6¢ 44 47 4c abFewUnY sF+glDGL
33 56 75 35 65 61 33 4d 44 59 77 49 78 63 32 44 3VuSea3M DYwIpc2D
78 4c 44 4d 74 38 6b 2f 75 42 68 38 6a 48 6d 38 xLDMt8k/ uBh8jHm@
63 66 54 63 69 35 6a 77 77 4c 2f 56 4c 6f 6c 41 cfTci5jw wL/VLolA
57 4c 6c 35 63 43 79 4e 6d 63 36 52 78 58 57 7a WL15CCYN mc6RpXWz

. z Acknowledgment number (tcp.ack), 4 bytes Packets: 3083 - Displayed: 3083 (100.0%) Profile: Default

EPUB/images/ws-asap-statistics.png
2 Wireshark - ASAP Statistics - fgp.pcap VoA

ASAP Message Type Messages Messages Share (%) Bytes (B)~ Bytes Share (%) First Seen(s) LastSeen (s) Interval(s) Message Rate (Msg/s) Byte Rate (B/s)
ASAP Cookie 612 51.908397 51408 55.822438 5.007261 115.382864 110.375603 5.544704 465.755100
ASAP Handle Resolution Response 101 8.566582 14140 15.354211 5.005179 29.946886 24.941707 4.049442 566.921903
ASAP Registration 103 8.736217 13184 14.316119 5.003974 117.982920 112.978946 0.911674 116.694309
ASAP Registration Response 103 8.736217 3708 4.026408 5.004791 117.983227 112.978436 0.911678 32.820422
ASAP Handle Resolution 8.566582 3.948226 5.004565 29.946839 24.942274 4.049350 145.776604
ASAP Endpoint Keep-Alive 73 6.191688 2920 3.170742 11.340718 130.144018 118.803300 0.614461 24.578442
ASAP Endpoint Keep-Alive Acknowledgement 73 6.191688 2628 2.853668 11.340911 130.144186 118.803275 0.614461 22.120602
ASAP Endpoint Unreachable 5 0.424088 180 0.195457 5.562115 29.743144 24.181029 0.206774 7.443852
ASAP Deregistration Response 4 0.339271 144 0.156365130.872772 133.568776 2.696004 1.483677 53.412384
ASAP Deregistration 4 0.339271 144 0.156365130.872458 133.568414 2.695956 1.483704 53.413335
ASAP Server Announce 0 0.000000 0 0.000000
ASAP Error 0 0.000000 0 0.000000
ASAP Cookie Echo 0 0.000000 0 0.000000
ASAP Business Card 0 0.000000 0 0.000000

Display filter: Apply

Copy Saveas... ‘OLukk‘
T —

EPUB/images/ws-stats-endpoints.png
o000 Wireshark - Endpoints - longtrace.pcapng

T Ethernet-16 IPv4-48 IPv6-17 TCP-205 UDP- 408

X Address ~ Packets | Bytes | Total Packets | Percent filtered | Tx Packets | Tx Bytes | Rx Packets | Rx Bytes |

Name resolution 00:05:cd:9a:b9:8e 363 bytes 182,747 KiB 363 100.00% 356 bytes 182,058 KiB 7 bytes 706 bytes

W Limit to display filter 00:11:32:60:78:9f 916 bytes 120,658 KiB 916 100.00% 611 bytes 71,444 KiB 305 bytes 49,214 KiB

01:00:5e:00:00:fb 1,885 KiB 357,859 KiB 1,930 100.00% 0 bytes 0 bytes 1,885 KiB 357,859 KiB

01:00:5e:7f:ff:fa 514 bytes 207,238 KiB 514 100.00% 0 bytes 0 bytes 514 bytes 207,238 KiB

14:10:9f:cf:da:cf 134 bytes 21,075 KiB 134 100.00% 105 bytes 15,662 KiB 29 bytes 5,413 KiB

33:33:00:00:00:01 15 bytes 1,291 KiB 15 100.00% 0 bytes 0 bytes 15 bytes 1,291 KiB

33:33:00:00:00:fb 1,540 KiB 329,924 KiB 1,577 100.00% 0 bytes 0 bytes 1,540 KiB 329,924 KiB

33:33:f:00:05:30 1 bytes 86 bytes 1 100.00% 0 bytes 0 bytes 1 bytes 86 bytes

3c:2a:f4:eb:19:ed 12 bytes 10,020 KiB 12 100.00% 12 bytes 10,020 KiB 0 bytes 0 bytes

96:44:f7:51:49:78 61bytes 18,538 KiB 61 100.00% 48 bytes 11,839 KiB 13 bytes 6,699 KiB

b8:27:eb:71:a0:e1 176 bytes 17,129 KiB 100.00% 88 bytes 10,223 KiB 88 bytes 6,906 KiB

dc:a6:32:06:88:d7 337 bytes 53,035 KiB 100.00% 337 bytes 53,035 KiB 0 bytes 0 bytes

€2:63:da:8c:6f:7f 9,877KiB 4,379 MiB 94.56% 6,050 KiB 1,208 MiB 3,827 KiB 3,171 MiB

Map e2:b7:4a:7e:3c:ad 3,008 KiB 555,714 KiB 100.00% 1,539 KiB 296,973 KiB 1,469 KiB 258,741 KiB

f0:2f:4b:00:3c:57 10,746 KiB 4,477 MiB 94.98% 5,852KiB 3,516 MiB 4,895 KiB 984,227 KiB

iRirinininid 406 bytes 32,737 KiB 100.00% 0 bytes 0 bytes 406 bytes 32,737 KiB

| Protocol

Bluetooth
DCCP
Ethernet
FC

FDDI

|IEEE 802.11
IEEE 802.15.4
IPX

IPv4

IPv6

JXTA
MPTCP
NCP

pevn

EPUB/images/ws-dns.png
o0 0 Wireshark - DNS - blbl.pcapng

Topic / Item v | Count | Average | Min val | Max val
v Total Packets 1277
v rcode 1277
No such name 9
No error 1268
v opcodes 1277
Standard query 1277
¥ Query/Response 1277
Response 638
Query 639
¥ Query Type 1277
PTR (domain name PoinTeR) 22
A (Host Address) 1255
v Class 1277
IN 1277
v Service Stats 0

request-response time (secs) 638 0.04
no. of unsolicited responses 0

P n

Display filter:

Copy Save as...

0.001604 0.866890

0.0001
0.0001
0.0000
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0000
0.0001
0.0001
0.0001
0.0000
0.0001
0.0000

nnnnn

| Rate (ms) | Percent

100%
100.00%
0.70%
99.30%
100.00%
100.00%
100.00%
49.96%
50.04%
100.00%
1.72%
98.28%
100.00%
100.00%
100%

0.1200
0.1200
0.0300
0.1200
0.1200
0.1200
0.1200
0.0700
0.0600
0.1200
0.0300
0.1200
0.1200
0.1200

0.0700

| Burst rate | Burst start

7969.291
7969.291
1874.338
7969.291
7969.291
7969.291
7969.291
7972.975
7969.291
7969.291
1873.472
7969.291
7969.291
7969.291

7972.975

Close

EPUB/images/ws-pref-appearance.png
M Vireshark Preferences

< Appearance R
pesnce. Remember main window size and placement
Fontand Colors | Openfilesin
Layout ® The most recenty used folder
Copture O Thisfolder: [C:\Users\usemame\Documents
Ecpert
Fiter Buttons Showupto
Name Resolution 10| filter entries
> Protocols
RAKeys 10 | recent files
> Statitcs Confirm unsaved cspture fles
Advanced

Display autocompletion for fiter text
Meain toolbar style: |Icons only

Window title

Prepend window ttle

Language: ¥ Use system setting

EPUB/images/ws-mate-transform.png
‘Anotner
wansiomaton for
i ftom?.

Fnother vansiom
win s namo?

Worg matching
AVPL to operand
AvPL

T

Ghorand AVP
“matghes ransiorms
maten?

EPUB/images/ws-export-specified-packets.png
M Viresharc Export Specified Packets

Savein

*

Quick access

Desktop

Libraries.

L}

This PC

@

Network

e] es e E
Name . Date modified Type Size.
B toreas /2872010824 PM Wiresharkcopture, w2
B spache-rdivs 200251291 Wireshark capture e
B osus-cesetup NI SBAM Vireshork capture.. 2706KB
B doma SIR0BTAPM Wiresharkcopture ke
B comeast bterst TIR0/2007B16PM Vireshark cpture.. 117.924KB
B comeast btest T1/30/2007520PM Vireshork cpture.. 117923 KB
B comcast bad-dhcp 9/26/2011 613PM Wireshark capture. ke
B dissectorbug 2242008212 Wireshark capture, 9
2 dnpta SI24IRAM Wiresharkcopture ke
2 ans 10/6/1999 554 P Wireshark copture. 26
B dos-2013-06:19 GRAATIM Wireshark copture., 40756K8
2 giop-broken /572003635 AM Wireshark copture. ke
For [Emr—— - o
Save as type: Wireshark Acpdump/... - peap (" dmp.gz:" dmp:" cap.gz:" cap:" peap gz:" peap) > Cancel
Heb
[ClConpress wih g2p
Packet Renge
OCaptured @ Displayed
©ipses w053 0
O Selected packet 1 1
Markedpackets 0 0
Frstolas maked 0 0
Omwse [0 0
Fove mommrer 0 0

EPUB/images/ws-packet-sep-win.png
 Frane 2: 60 bytes on wire (480 bits), 60 bytes captured (430 bits)
4 Ethernet 11, Src: Standard_68:8bifb (00: b), Dst: 3com_1bi07:fa (00:20:af:1b:07:a)
2)
)
Globally unique address (factory default)
Individual address (unicast)
Standard_68:8bifb (00:€0:29:68:5b:b)
Address: Standard_68:8bifb (00:20:29:68:8b:7b)
L6 bits Globslly unique address (factory default)
- 16 bit: Individusl sddress (unicast)

Padding: 010101010101010101010101010101010101

4 Address Resolution Protocol (reply)
Hardware type: Ethernet (1)

Protocol size: 4

©0 20 af 1b 07 fa 00 c0 29 68 Gb b 08 06 00 01
@5 00 05 04 00 02 00 c0 29 63 &b b c0 a8 00 01
©0 20 af 1b 07 fa co a8 00 02 01 01 01 01 01 o1
o1 01 01 01 01 01 01 01 o1 o1 o1 o1

EPUB/images/ws-main.png
M to-netfic problems-2011-07-06.peap

Fie Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Am 0 [BEREBRe=2=ZF IS _aaal
(W ooy 2 diplay iter __<cr/> 3 - Eresson... +
No. Tme Source Destnaton Protocal Length Info A
| 38365142015 192.168.0.21 174.129.249.228 TCP. 66 40555 > 80 [ACK] Seq=1 Ack=1 Win-5888 Len=0 TSval-491519345 TSecr-551811827
| 34265142715 192.168.0.21 174.129.249.228 HTTP 253 GET /clients/netflix/Flash/application. swf?flash_version=flash_lite_2.1&v=1.58n
| 385 65.230738 174.129.249.228 192.168.8.21 TCP 66 80 42555 [ACK] Seq=1 Ack=188 Win-6864 Len=0 TSval-551811850 TSecr=491519347
| 346 65.200782 174.129.249.208 192.168.0.21 HTTP 528 HTTP/1.1 302 Moved Temporarily =
| 387 65.241592 192.168.0.21 17.129.249.228 TCP 66 40555 + 80 [ACK] Seq=188 Ack=763 Win=7a24 Len=0 TSval-491519446 TSecr-S51811852
345 65.242532 192.168.0.21 192.166.0.1 ous 77 Standard query @x2188 A cdn-0.nflxing. con
349 65.276870 192.168.0.1 192.168.0.21 ONS 489 Standard query response 0x2188 A cdn-0.nflxing.com CHANE images.netflix.con. edg
| 3% 65.277992 192.168.0.21 63.80.242.48 TCP 74 37063 » 80 [SYN] Seq=0 Win=5840 Len-0 NSS=1460 SACK_PERN-1 TSval=#91519452 TSect
| 35165207757 63.50.242.48 192.168.8.21 TCP 74 80 > 37063 [SYN, ACK] Seq-0 Ack-1 Win=5792 Len=0 MS5=1450 SACK_PERN-1 TSval=329%
| 35265208396 192.168.0.21 63.80.242.48 TCP 66 37063 > 80 [ACK] Seq=1 Ack=1 Win=5888 Len=0 TSval-491519502 TSecr-3295534130
| 35365208687 192.165.0.21 63.80.242.48 TP 153 GET /us/nrd/clients/Flash/814540. bun HTTP/1.1
| 35465318730 63.50.242.48 192.16.8.21 TCP 66 80 - 37063 [ACK] Seq=l Ack=83 Win=5792 Len=0 TSval=3295534151 TSecr=491519503 |_|
| 35565321733 63.50.242.48 192.168.0.21 TCP 1514 [TCP segrent of a reassembled PDU] M
< >

Frame 349: 489 bytes on wire (3912 bits), 489 bytes captured (3912 bits)
Ethernet II, Src: Globalsc_68:3b:6a (f6:ad:4e:08:3b:6a), Dst: Vizio_14:
Internet Protocol Version 4, Src: 192.168.6.1, Dst: 192.168.8.21
User Datagram Protocol, Src Port: 53 (53), Dst Port: 34036 (34036)

 Domain Name System (response)

Request In: 345]

[Tine: 0.034333000 seconds]

Transaction ID: ex2188

Flags: exslse Standard query response, No error

Questions: 1

Answer RRs: 4

Authority RRs: 9

Additional RRs: 9
v oueries

cdn-@.nflxirg.c
Answers

1 (00:19:9d:14:8a:e1)

type 4, class T

Authoritative nameservers

9020 00 15 00 35 84 4 01 <7 83 3 51 50 00 o1
0030 00 04 00 09 00 09 05 63 64 Ge 2d 30 07 6e 66 6C
0040 78 69 6d 67 @3 63 67 6d 00 00 01 00 O1 CO Oc 00
0950 @5 00 @1 00 00 @5 29 00 22 06 69 6d 61 67 65 73 . Linages
0050 @7 Ge 65 74 66 6c 69 78 03 63 6F 6d 09 65 64 67 .netflix .com.edg
6676 65 73 75 69 74 65 03 6o 65 74 00 cO 2f 00 05 00 esuite.n et../.

@ ¥ Laentiication o transacton (dnsid), 2byies [[Packets: 10299 Dislayecs 10299 (100,0%) - Load tme: 00.152]| Profe: Defadt

EPUB/images/ws-mate-dns_pdu.png
Extracted DNS PDU

EPUB/images/ws-wireless-menu.png
M odd-httppcap
Fle 6t View Go Coptwe Andze Stsics Tdephony | Vireless| Took Hlp
Am 0 IDRB Aews

Bluetooth ATT Server Attributes.

[foply 2 dspey fiter _<Cril> Bluctooth Devices 3 Jeereson. +
No. Time. Source Destination Pri Bluetooth HCI Summary
1 0.000000 200.121.1.131 __ 172.16.0.122____T¢ tesssenbled PoU
WLAN Traffic 1
30.05738 200.121.1.131 172.16.0.122 1CP 9% (10 segnent of = reassenbled FDU]
4 0.025745 172.16.0.122 200.121.1.131___TCP 54 [TCP indow Update] [TCP ACKed unseen 5.4 [ACK] Seq-L Ack=11201 Win=63000 Len-0
70.102939 200.121.1.131 _ 172.16.0.122 TP 155 [1CP segnent of 5 reassenbled PDU]
9 0.120265 200.121.1.131 _ 172.16.0.122 TP 155 [1CP segnent of 5 reassenbled PDU]
110.156162 200.121.1.131 172.15.0.122__TCP 155 [1CP segnent of s reassenbled PDU]
130179506 200.121.1.131 172.15.0.122__TCP 155 [1CP segnent of s reassenbled PDU]
Frane 1 1454 bytes on wire (11632 bits), 1456 bytes captured (11632 bits)
Ethernet I, Src: Vmiare_co:00:01 (00 61), Dst: Vmware_42:12:13 (00:0c:29:42:12:13)
Internet Protocol Version 4, Src: 200.121.1.131, Dst: 172.16.0.122
Transwission Control Protocol, Src Port: 10554 (10554), Dst Port: 80 (80), Seq: 1, Ack: 1, Len: 1400
0 6c 25 42 12 13 00 50 55 cO 00 0L 05 00 45 00)6 B
05 20 01 41 00 00 63 05 d3 90 C3 79 01 83 3 10 L..A.. ...y,
072 23 3a 00 50 a7 5¢ 04 45 <2 22 ce b 50 10)i\ H....P.
£ £ 77 67 00 00 30 3¢ 73 5777 5174 45 79 3 L.ug..0T SMQEEYN
45613375 70 74 44 63 51 4F 2f 6b 75 31 41 52 ZadupiDe QO/kuLAR
S2 65 4759 67 53 32 41 34 4759 35 31 56 33 32 RFGVgS2A 4OVSIV2 .

Q7 Packets: 3083 - Displayed: 3083 (100.0%) - Load tme: 0:0.100 || Profile: Default

EPUB/images/ws-pref-appearance-columns.png
M Vireshark Preferences

~ Appearance
Columns.
Font and Colors
Layout
Capture
Expert
Fiter Buttons
Name Resolution
> Protocols
RSAKeys
> Statistics
Advanced

Displayed Ttle Type Fields Field Occurrence Resolved
No. Number
Tme Time (format asspecified)
Dettadisp Custorn frame.time_delta_displayed 0
Source Source address
Destination Destination address
Protocol Protocol
Length Packet length (bytes)
Info Information
+] [=] I Show displayed columns only
oK Cancel

EPUB/images/toolbar/x-resize-columns.png

EPUB/images/ws-tel-seq-dialog.png
Wireshark - Call Flow - SIP_CALL RTP_G711.pcap

Time

0.000000

0.007889

0.047524

8.477925

8.479371

8.524137

8.529324
17.675768
17.688921
17.689959
17.691514
17.694232
17.704592
24.489801
24.498913
24.499941
24.503972
24.505481
24.584535
24.596199
24.599911
24.615834
24.665953
24.674680
24.692752
24.707754
24.712799
32.831071

T

4 nodes, 29 items

Help |

200.57.7.195

2427

200.57.7.196

200.57.7.204

RTP (9711A)

NTFY ObsEvt:hd

200.57.7.202

2427

200 (NTFY)

RQNT

2427

2427

RONT DigitMap SigReq:d!

2427

200 (RQNT)

2427

200 (RQNT)

NTFY ObsEVt:9,0,0.5

200 (NTFY)

2427

RQNT

2427

2427

200 (RQNT)

2427

CRCX SDP (g711U)

2427

200 (CRCX) SDP (g711A)

RQNT

2427

200 (RQNT)

2427

-
i
i
-
|
=
2427 =
i
-
i
-
i
-
i

INVITE SDP (g711A g729 g723)

100 Trying

5060 & 5061

180 Ringing

: 5061

RQNTSigRe«

RTP (g711A)

200 (RQNT)

AUEP.

Comment

SIP INVITE From: <si
SIP Status 100 Trying

SIP Status 180 Ringing

SIP Status 200 Ok

RTP, 548 packets. Duration: 24.125 SSRC: 0xD2
SIP Request INVITE ACK 200 CSeq:1

RTP, 891 packets. Duration: 26.385 SSRC: OXS8F3...
MGCP aaln/1@CPG2 Request

MGCP aaln/1@CPG2 Response

MGCP aaln/1@CPG2 Request

MGCP aaln/1@CPG2 Request

MGCP aaln/1@CPG2 Response

MGCP aaln/1@CPG2 Response

MGCP aaln/1@CPG2 Request

MGCP aaln/1@CPG2 Response

MGCP aaln/1@CPG2 Request

MGCP aaln/1@CPG2 Response

MGCP aaln/1@CPG2 Request

MGCP aaln/1@CPG2 Response

MGCP aaln/1@CPG2 Request

MGCP aaln/1@CPG2 Response

RTP, 6 packets. Duration: 0.115 SSRC: 0x2E3D.

SIP INVITE From: *Ivan Alizade" <sip:5514540002...
SIP Status 100 Trying

SIP Status 180 Ringing

MGCP aaln/1@CPG2 Request

MGCP aaln/1@CPG2 Response

MGCP aaln/1@CPG2 Request

| Reset Diagram || Play Streams |-/ | Export || Close

EPUB/images/ws-gui-config-profiles.png
[XN] Wireshark - Configuration Profiles

All profiles
Profile Type Auto Switch Filter
Default Default
Initech Personal dhcp.ip.server ==10.20.20.4
Weyland-Yutani Personal wlan.ssid == "Ripley"
Bluetooth Global —
Classic Global —
No Reassembly Global —
+ = B | Auto switch packet limit 1000 [Users...Yutani

Help Import Export Cancel

EPUB/images/related-current.png

EPUB/images/ws-follow-sip-stream.png
M wireshark - Follow SIP Stream (sip.Call-ID

1.2134810.0.2.20°) - sip-rtp-g726.pcap B[E[x]

INVITE sip:test@10.0.2.15:5060 SIP/2.0

via: SIP/2.0/UDP 10.0.2.20:5060;branch=z9hG4bK-2134-1-0
From: "6726-16/800 ip:sipp@1e.0.2.20:5060>; tag=1
To: test <sip:test@10.0.2.15:5060>

Ccall-ID: 1-2134@16.0.2.20

Cseq: 1 INVITE

Contact: si
Max-Forwards: 70

Content-Type: application/sdp
Content-Length: 128

ipp@10.0.2.20:5060

v=0
0=- 42 42 IN IP4 10.0.2.20

=

c=IN IP4 10.0.2.20

t=0 0

m=audio 6000 RTP/AVP 99

a=rtpmap:99 6726-16/8000

a=recvonly

SIP/2.0 100 Trying

via: SIP/2.0/UDP 10.0.2.20:5060; branch=z9hG4bK-2134-1-0
From: "6726-16/8000" <sip:sipp@l0.e.2.20:5060>;tag=1
To: test <sip:test@10.0.2.15:5060>

call-ID: 1-2134@16.0.2.20

cseq: 1 INVITE

User-Agent: FreeSWITCH-mod_sofia/1.6.12-20-b91a0a6~64bit
Content-Length: ©

3 client pkts, 3 server pkts, 4 turns.

Entire conversation (2,980 bytes) -] Show data as | ASCII -] Stream 0 |
Find: | | [Find Next

Help | | Filter Out This Stream | Print || Saveas.. || Back || Close

EPUB/images/ws-expert-column.png
oo v Expert Prot +

EPUB/images/ws-analyze-menu.png
M hitp-coo.pcap - o X
Fle Edt View Go Capture |Analyze Statistics Telephony Wireless Tools Help
aAm @® |] Display Filters... Lid
W Apply a disply fiter . <Ctr-/> Display Filter Macros.. <]+
o Tine Source Display Fikter Expression... botocol Length 1ofo
Tooe 0. o sl P 78 32323 » 80 [ACK] Seq-1 Acke1 Win-8192 Len=3{
20000000 10.0. 42 32323 > 80 [ACK] Seq=39 Ack=1 Win=5192 Len
Apply as Fiter »
Prepare a Fiter »
Conversaion Fiter »
Ensbled Protocols.. Ctrb+Shift+E T .
oot P, 75 32323 > 80 [ACK] Seq=62 Ack=1 Win=5192 Len
Reload LuaPlugins Crl=ShifteL.
Frame 1: 78 bytes on wire =)
Internet Protocol Version scre 4
¥ Transmission Control Prot Follow »
Source Port: 32323
Destination Port: 80 Show Packet Bytes.. CtrleShiftsO
[Stream index: 0] Expert Information

[TCP Segnent Len: 33]
Sequence Number: 1 (relative sequence number)
Sequence Number (raw): 100

[Next Sequence Number: 39 (relative sequence number)]
Acknowledgnent Number: 1 (relative ack number)
Acknowledgnent number (raw): @

0101 ... - Header Lengths 20 bytes ()
Flags: ox010 (ACK)
sindow: 819
45 00 00 4c 00 0L 00 00 40 06 66 e

scio 03 60 cb 03 7e 53 50 5 oo a9 00 o oz
5010 20 00 05 ca 00 00 50 55 54 20 2f 3120 45 P PUT /1 H
545450 2F 31 2 31 04 0a 43 6F Ge 74 65 Ge 74 TTP/L.1. Content
2d 4c 65 62 67 74 68 3a 20 34 0d 0a od 6a “Length: 4

@ 7 Sequence Number (tcp.se), 4bytes

Packets: 16 - Displayed: 16 (100.0%) Profie: Defauit

EPUB/images/ws-file-import.png
M Wireshark . Import From Hex Dump

File:

HexDump Regular Expression

Offsets: @ Hexadecimal
O Decimal
O Octal
O None
Direction indication: []

ASCll identification: []

Timestamp format: |-/ %5 %

Mo format il b aopted)

Encapsulation

Encapsulation Type: | Ethernet

© No dummy header

O Ethemet Ethertype (hex):

Ow Protocol (dec):
Source address:
Destination address:

O uop —

Ow Destination port

OscP Ty

O CTP Dsta) PP

ExportPDU Dissector data

1P version:

Interface name: [Fake F, Import from Hex Dump.

Maximum frame length:

EPUB/images/ws-packet-range.png
Packet Range
OCaptured @ Displayed

@ Alpackets 03 083
O Selected packet 0 0
Marked packets 0 0
Frst o last marked 0 0
ORenge: [0 0
Remove lgnored packets 0 0

EPUB/images/toolbar/x-capture-file-save.png

EPUB/images/ws-merge-qt5.png
@00 (X| Wireshark - Merge Capture File

Look in: | 8 /nome/gerald/Development/capture-

B computer Name v size

5 captures

sasser.tcp 1k8

| SIGTRAN-hir-sgsn2 87 k8
" sip.peap 7k8
7 slip.cap 1k8
) smtp.pcap 12k8
| snmp.pcap 678...tes
| snoop-ethereal-bug.pcap 1k8

Type

tep File
File
peap File
cap File
peap File
peap File
peap File

les /0 © 0@ @@

Date M|

5/11/04)
5/5/05
3/28/02,
9/27/98,
11/28/9|
2/13/02,
127270

File name: [sandbox1-virus-2010-08-12.pcap

Files of type: |All Files

| ¥cancel

O Prepend packets Format: Wireshark/tcpdump/... - pcap
@ Merge chronologically - Size: 856 KiB, 8,977 data records
O Append packets Start / elapsed: 2010-08-12 20:35:01 / 00:10:18

Read filter: [Apply a read filte:

EPUB/images/toolbar/x-capture-restart.png

EPUB/images/ws-mate-tcp-output.png
Frame 1: 62 bytes on wire (496 bits), 62 bytes captured (496 bits)
Ethernet II, Src: Xerox_60:60:60 (6:00:01:00:00:06), Dst: fe:ff:20:00;
Internet Protocol Version 4, Src: 145.254.168.237, Dst: 65.208.228.223

00 (foiff:20:00:01:00)

~ MATE tcp_pdu
v tep_pdu: 1
Tcp_pdu time: 0
tcp_pdu time since beginning of Gop: @
tcp_pdu Attributes
v tepses: 1
GOP Key: addr=145.254.160.237; addr=65.208.228.223; port=3372; port=30;
tep_ses Attributes
tep_ses Times
~ tcp_ses number of PDUS: 34
Start PDU: in frame: 1 (0.000000 : ©.000000)
+ in frame: 2 (9.911310 : 0.911310)
©.000000.
©.000000.
: in frame: 5 (1.472116 : 0.560806)
in frame: 6 (1.652419 : 0.210303;
: in frame: 7 (1.512606 : 0.130157
in frame: & (1.512606 : 0.000000
PDU: in frame: 9 (2.012894 : 0.200288)
PDU: in frame: 10 (2.443513 : 0.430619)
PDU: in frame: 11 (2.553672 : 0.110159)

EPUB/images/ws-calcappprotocol-statistics.png
2 Wireshark - CalcAppProtocol Statistics - calcappprotocol.pcapng VoA

CalcAppProtocol Message Type ~ Messages Messages Share (%) Bytes (B)~ Bytes Share (%) First Seen(s) LastSeen(s) Interval(s) Message Rate (Msg/s) Byte Rate (B/s)

CalcApp Request 209 27.866667 5016 27.866667 51.135808 110.691697 59.555889 3.509309 84.223409

CalcApp Accept 193 25.733333 4632 25.73333351.175440 116.997291 65.821851 2.932157 70.371767

CalcApp Complete 185 24.666667 4440 24.666667 51.221624 117.244603 66.022979 2.802055 67.249313

CalcApp Keep-Alive 74 9.866667 1776 9.866667 54.604830 110.968776 56.363946 1.312896 31.509504

CalcApp Keep-Alive Ack 73 9.733333 1752 9.73333354.605146 110.777747 56.172601 1.299566 31.189583

CalcApp Reject 16 2.133333 384 2.13333353.895540 107.204972 53.309432 0.300135 7.203228

CalcApp Abort 0 0.000000 0 0.000000
Display filter: Apply|

‘ Copy ‘ ‘ Save as... ‘ ‘0 Lukk‘

EPUB/images/ws-bt-hci-summary.png
o0 ® Bluetooth HCI Summary

Name | OGF | ocF | Opcode | Event | Subevent | Status | Reas
v Link Control Commands 0x01
» Inquiry 0x01 0x0001 0x0401
» Link Policy Commands 0x02
Controller & Baseband Commands 0x03
Informational Parameters 0x04
Status Parameters 0x05
Testing Commands 0x06
v LE Controller Commands 0x08
v LE Set Random Address 0x08 0x0005 0x2005
Frame 1274 0x08 0x0005 0x2005

Results filter:

Display filter: All Interfaces . All Adapters .

EPUB/images/ws-save-as-qt5.png
@00 [X| Wireshark - Save Capture File As.

Lookin: | [8/tmp/sample captures e oo @dEE

B computer Name v | size

Type Date Mod

9 captures

File name:

loh-no-everything-is-broken.pcapng|

saveas: |Wireshark/tcpdumpl... - pcap

| & cancel
[B2nep

(] Compress with gzip

EPUB/images/ws-capture-file-properties.png
M Wireshark . Capture File Propertes - Ethernet

(RIPEMD160):

Time

Firstpacket:
Lastpadkets

20191228 18:39:48
20191228 18:40:32

‘eb36eSF48TDTc5 Hbbes7ocrISS2Bes.

Hash (SHA): 21203fbbfof0e40463 13750d 18 tecfbd07HtS.
Format: Wiresharkl... -pcapng
Encapsuation: Ethernet

C:\Users\GERALD ~1\AppDatalLocalTemp\ireshark EthermetLXDDO.peapng
278
‘8645e641de 13d975135b 3ead3a2a 30 3266 06 afEcA b9 fade Fasachad 12c

Intel Core Processor (Skylake, TBRS) (nith SSE4.2)

64bit Windows 10 (1905), buid 18363

'Dumpeap (Wireshark) 3.3.0rc0-202-gf0be7F27d862 (v3.3.0rc0-202-gf0be7727d862)

Dropped padkets ‘Capture fiter Lk type Packet size mit
164632 (77.3%) none Ethernet 22144 bytes
Measurement Captureg. Diplaved Marked
Packets 213018 200378 (64.1%) 20295 (9.5%)
Time span, s 4118 34958 2414
Average pps. w4 7319 626.1
Average padket size, B 1240 188 1503
Bytes 264114525 258087840 (57.7%) 32329718 (12.2%)
Average bytes/s. 086k 7% o7
Average bits/s am oM 77K
Capture fle comments
Speed test capture.
Refiesh 'save Comments| [_Close | |Copy To Cipboard| | Help

EPUB/images/ws-statistics-menu.png
M odd-nttppcap
Fle Edt View Go Capture Anslze

Statistics | Telephony Wireless Tools Help

aAm @® | B]e= Capture File Properties R
it <cuil> Resolved Addresses 3 - Eresson... +
e Protocol Hierarchy e
1 0.000000 200.121.1.131 Conversations 1454 [TCP segnent of a reassembled PDU]
Endpoints
3 0.025738 200.121.1.131 oot tength 1454 [TCP segnent of a reassembled PDU]
40.025749 172.16.8.122 cEcilagis 54 [TCP Window Update] [TCP ACKed unseen s.4 [ACK] Seq=1 Ack=11201 Win=63000 Len=0
1/0 Graph
Service Response Time >
7'0.102939_200.121.1.131 1454 [TCP segnent of a reassembled PDU]
DHCP (BOOTP) Statistics
9 0.128285 200.121.1.131 ONC-RPC Programs 1454 [TCP segnent of a reassembled PDU]
»
11 0.154162 200.121.1.131 U 1454 [TCP segment of a reassembled PDU]
ANCP
13 0.179906 200.121.1.151 BAChet » [1854 [TCP segnent of a reassembled PDU]
Collectd hd
Frame 1: 1454 bytes on wire (1163 DNS (11632 bits)
Ethernet 11, Src: Vmiare_co:00:01 po oo fiare_42:12:13 (00:0c:29:42:12:13)
Internet Protocol Version 4, Srct lo.122
Transmission Control Protocol, Sri BRI rt: 80 (88), Seq: 1, Ack: 1, Len: 148
HPFEEDS
HTTP »
HTTR2
Sametime
TCP Stream Graphs >
UDP Muticast Streams.
1Py Statistics »
1Py Statistics »
@0 6c 29 42 12 13 00 50 56 <0 00 6L 65 00 45 00 ..)B -
©5 20 0L 41 00 00 62 05 d3 90 B 79 BL 83 ac 10 ...A..3. ...y..
90 72 29 3a 00 50 a7 Sc 04 43 €2 22 ee b 50 10 .1):.P.\ H....P.
£F £F 77 67 00 00 30 54 73 57 77 5174 45 79 de ..ug..0T SWQEEYN
456133 78 70 74 44 63 51 4F 2 Gb 75 31 41 52 EadxptDe QU/KULAR
52066 47 59 6753 32 41 34 47 59 35 31 56 33 32 RFGYES2A 4GYSIV32 .

kS

Packets: 3083 - Displayed: 3083 (100.0%) - Load tme: 0:0.100|| Profile: Default

EPUB/images/ws-capture-options-output.png
Wireshark - Capture Options.
pture Opt

Tnput | Ouput | Optons

Capture to a permanent fie-

Fies [C:\Captures yny-favorte-web-sit-stopped-norking

Output format: @ peapng O peap

[create 2 new fie automatically.

M after 100000 | packets
BAatter 100 2] [megabytes v
O after 1 2| seconds v
[when tme s a muitle of [1 2] [hows v
[Use a ring buffer with

Start

EPUB/images/ws-bluetooth-devices.png
000 Bluetooth Devices

BD_ADDR ~ |oul | Name | LMP Version | LMP Subversion |Manufacturer |HCI Version |HCI Revision ||
00:00:00:00:00:00 SamsungE

0b:0b:0b:0b:0b:0b

0f:0f:0f:0f:0f:0f

10:10:10:10:10:10 IntelCor i
14:14:14:14:14:14

1f:1f:Af:1F:1:9f

24:24:24:24:24:24

2d:2d:2d:2d:2d:2d

2e:2e:2e:2e:2e:2e

31:31:31:31:31:31

47:47:47:47:47:47

50:50:50:50:50:50

All Interfaces . Show information steps

14 items; Right click for more option; Double click for device details

EPUB/images/related-ack.png

EPUB/images/ws-expert-information.png
[JON] Wireshark - Expert Information - gt download issues 2019-06-24.pcapng

Packet v | Summary Group Protocol Count

2 [TCP Out-Of-Order] 80 - 59308 [ACK] Seq=11585 Ack=235 ... Malformed C
[TCP Spurious Retransmission] 80 - 59308 [PSH, ACK] Seq= Malformed

6 [TCP Spurious Retransmission] 80 - 59330 [PSH, ACK] Se Malformed

1202 Standard query response 0xc7a7 AAAA cy2.vortex.data.micros... Protocol NS

>
>
>
>
>
» Note This frame is a (suspected) spurious retransmission Sequence
» Note ACK to a TCP keep-alive segment Sequence TCP 28
» Note TCP keep-alive segment Sequence TCP 28
» Note Duplicate ACK (#1) Sequence TCP 60
» Note This frame is a (suspected) retransmission Sequence TCP 280
» Chat GET /online/qtsdkrepository/mac_x64/desktop/qt5_5124_src_d... Sequence HTTP 28
» Chat TCP window update Sequence TCP 18
» Chat Connection establish acknowledge (SYN+ACK): server port 80 Sequence TCP 47
» Chat Connection establish request (SYN): server port 80 Sequence TCP 97
» Chat Connection finish (FIN) Sequence TCP 163
No display filter set.
Group by summary Search: Show... “

Help Close

EPUB/images/ws-export-objects.png
Packet ~ Hostname Content Type size Filename |~

54 text/plain labytes nositxt
132 textyhtml 1,305 bytes qsml.aspx7qu¢
163 textjhtml 1,346 bytes qsml.aspx7qu¢
177 textjhtml 1,369 bytes qsml.aspx7qu¢
198 textjhtml 1,398 bytes qsml.aspx7qu¢
212 google.com textjhtml 219 bytes |

226 www.google.com textjhtml 231bytes |

1858 www.google.com textjhtml 1,058 bytes url7sa=térct=
1904 www.bluproducts.com textyhtml 19k8 1

1955 www.bluproducts.com text/css 7.321 bytes default_iceme
1972 www.bluproducts.com texticss 331bytes default_notjs.c
2100 www.bluproducts.com texticss 63kB widgetkit-241(
2135 www.bluproducts.com ation/x-javascript 4,707 bytes core-816dedc
2139 www.bluproducts.com ation)x javascript 657 bytes caption-5e0b3
2280 www.bluproducts.com i 20k8 widgetkit-34c:
2390 www.bluproducts.com 18k8 cufon-yui-1d1(
2545 www.bluproducts.com o5 kB mootools-core
2560 www.bluproducts.com 93kB jquery-Taes7c
2689 www.bluproducts.com 4,784 bytes corejs

2728 platform linkedin.com textfjavascript 3.768 bytes injs

2743 www.bluproducts.com texticss 132k template-897f
2784 www.bluproducts.com application/x-javascript 248 template 3120
2808 www.bluproducts.com image/png 19k facebook.png
2000 www.bluproducts.com image/png 2k8 Twitter.png
3060 www.bluproducts.com image/png k8 googleplus.pn
3066 s.amazon-adsystem.com image/gif 43bytes iui37d=3p-hie
3145 www.bluproducts.com image/png 19k8 mailpng v
‘ D
Text Filter: |

Help save All save

EPUB/images/ws-stats-srt-smb2.png
M Wireshark - SMB2 Service Response Time Statistics - smb-on-windows-10.pcapng - o x

Index Procedure. Calls Min SRT (s) Max SRT (s) Avg SRT (). Sum SRT (s)
& Clse 1 owwss ooowss oootose oooross
5 Crme 1 omew omew oowers ooouars
16 Getinto 1 omen omen ooon oooourt
W ot 1 ome ooy oooorsy oooors?
O NegotsteProocel 7 00014 000RZT 000533 ooz
o Resd > oo ooem omoie ooo0izs
sonsap 12 000 0ol 00w ooortas
 Tee Comet 1 om oo ooors oooorss
S Wie 2 oo oo omon oooxzzs

Meyeshie s
PepareasFite > Notseleted

Disply fter: [] ooy |

copy | [saveas. | [cose

EPUB/images/ws-stats-http-requestsequences.png
M Wiresharc . Request Sequences - 2014-11-16-traffic-analysis-exercise.pcap.

Topic / tem
' HTTP Request Sequences

bt/ /unww.bing.com/search?q=ciniholland.niégs=ds&form=QBLH

bt/ funson ciniholland./
bt/ /unsaw.youtube.comy/embed/hagSewihi

hitps://unww.youtube.com/embed/hagSewiahi
iholland.nl/wp-includes/js/jquery/jquery jstver=1.10.2
Hland.nl/wp-includes/js/jquery/jquery-migrate.minjstver=12.1
iholland.nl/wp-content/uploads/2013/09/IMG-20130928-WAO02-150x150,pg.
lland.nl/wp-content/uploads/2012/01/P1260499-200:298 jpg
Hland.nl/wp-content/themes/cini/style.css.
iholland.nl/wp-content/themes/cini/reset.css
Hland.nl/wp-content/themes/cini/js/functionsjs

iholland.nl/wp-content/themes/cini/img/donate_on.gif
Hland.nl/wp-content/themes/cini/img/br_logo.gif
iholland.nl/wp-content/plugins/sitemap/ css/page-list.css?ver=42
lland.nl/wp-content/plugins/contact-form-7/includes/js/scr
Hland.nl/wp-content/plugins/contact-form-7/includes/js/jquery form.mi
iholland.nl/wp-content/plugins/contact-form-7/includes/css/styles.css ver=:
izin/new/jquery.php
~ hitpy//24corp-shop.com/

hitp://24corp-shop.com/source/notfound.gif

<

Js7ver=3.50.0-2014.02.05
372

 hitp://stand trustandprobaterealty.com/?PHPSSESID=njrMNruDMhvJFIPGKUXDSKVBMOTP ThiJko2aheG \Vg|ZDIZIZiZj15V2cS0Tg3MzE IMakMmEd|
hitp://stand trustandprobaterealty.com/index. php?req=swiginum=8098PHPSSESID=njrMNruDMhvJFIPGKUXDSKVBMOTP ThnJko2ahet\g|ZD)
hitp://stand trustandprobaterealty.com/index. php?req=swiginum=7533&PHPSSESID=njrMNruDMhwIFIPGKuXDSKVEMOTP Thnlko2aheS V|2t

Display fiter: Enter a dsplay fer

Aeply

EPUB/images/related-response.png

EPUB/images/ws-telephony-menu.png
A DWsipinfopeap - o x
File Edt View Go Capture Analyze Stafistics Telephony Wireless Tools Help

An @ EBRBRes= VolP Calls
(R pply = diplay fier.. <Cul ansi ,
No, Time Source &3 * I Lengtl Info
1 0.600060 178.45.73.241 1AX2 Stream Analysis 5 1093 Request: INVITE sip:echo..
20060251 178.45.73.261 ISUP Messages > 1093 Request: INVITE sipsecho
o6l 213.192.59.75 6P U , 629 status: 100 trying - yo
so.0s0748 213.192.59.75 > 589 Status: 200 OK (TWVITE)
5 0.128838 178.45.73.241 MBS > 1093 Request: INVITE sip
Go.132003 178.45.73.241 Osmmux b 411 Request: CANCEL sip:
70133009 178.45.73.241 D) 411 Request: CAWCEL sip
Soaaass 213.192.59.75 s L s 160 trying -- yo.
50.147800 178.45.73.241 a2
100149915 213.192.59.75 scre v om
110103195 178.45.73.200 SMPP Operaions 642
120208058 213.192.59.75 o 663 -
1o22irto 213.192.59.75 629 Status: 106 trying - yo
14 0.223817 213.192.59.75 Fiap > 989 Status: 200 OK (INVITE)
15 0.205066 213.192.59.75 Noap 663 Status: 200 ok -- no mor—
> Frame 1: 1093 bytes on wire (8744 bits), 1 EAP 3 cc 0o DNCRETNTRIE 65 4 110
> Ethernet II, Src: DLink b4:7d:33 (60:17:58 H225 3100 21 45 00 04 27 00 00 40 00 40
> PPP-over-Ethernet Session 2d 49 f1.d5 c@ 3b 4b 13 c4 13 c4 04
> S Flows te 5649 54 45 20 73 69 70 3a 65 63
> Internet Protocol Version 4, Src: 178.45.7 SIP Statistics [0 74 65 6c 2 6f 72 67 20 53 49 50
g X 0 44 6178 65 3a 20 57 65 64 2c
> User Datagram Protocol, Src Port: 5060, Ds WAP-WSP Packet Counter 31 79 75 36 33 30 21 21 29 36 58 29
> Session Initiation Protocol (IWITE) 34 3a 32 30 20 47 4 54 od 03 43 53 63 71 20

1
1
i
2
2
H
2
512049 42 56 49 54 45 0d 0a 56 69 61 32 20 5
49 50 2F 32 2¢ 30 2F 55 44 50 20 31 37 38 2¢ 3
35 2¢ 37 33 2¢ 32 34 31 3a 35 30 36 30 3b 62 7
61 62 63 68 3d 7a 39 68 47 34 62 4b 31 36 61 3
323330 62 2d 31 34 35 66 2d 65 30 31 31 2d 3
3039 61 2d 30 30 31 39 63 62 35 33 64 62 37 3
3b 7270 6F 72 74 0d @a 55 73 65 72 2d 41 67 6
62 74 3a 20 45 6b 69 67 61 2F 33 2e 32 22 30 @

6

100 @a 45 72 6F 6d 3a 20 22 73 61 6d 20 6e 65 74

e — e er—

EPUB/images/ws-merge-win32.png
M Viresharic Merge with capture fle

Lookin:

*

Quick access

Desktop

Libraries.

L}

This PC

@

Network

T Copturss J @@ e m

2 svninfo-normal B traceroute 20100502

B tcpaprit B tveneto problems-2011-07-06

B tcpumpt B uucp

2 team.probe 2 uucprtet

B teardiop B weve-dncp

2 teinet-cooked B waverno-ip-arp

2 teinetron 2 virp-cap-TLS-to-win2k-RADIUS

B teredoreas 5 virp-cop-TLS-to-win2k-RADIUS

Bt 5 viresherk download_lostpackets.recove.

[testtcpaume B v

5 thud-cof-br0 B vmwaviresharkorg bsic demo

2 thud-oof-n0 B ttssh

Btrace Bttashy

<

File name: tv-netfiix-problems-2011-07-06. Open

Files of type: Al Files (T
Help

Readiter Fomat WresharkAcpdump..-peap

Size: 89928, emor afer 10299 records
O Prepend packets o existng fle Start/ elapsed: -
@ Merge packets chronologicaly
O Append packets o existingfie

EPUB/nav.xhtml

Table of Contents

		Preface

		Introduction

		Building and Installing Wireshark

		User Interface

		Capturing Live Network Data

		File Input, Output, And Printing

		Working With Captured Packets

		Advanced Topics

		Statistics

		Telephony

		Wireless

		Customizing Wireshark

		MATE

		Appendix A: Wireshark Messages

		Appendix B: Files and Folders

		Appendix C: Protocols and Protocol Fields

		Appendix D: Related command line tools

		This Document’s License (GPL)

		Front Cover

		Table of Contents

		Start of Content

EPUB/images/ws-tcp-analysis.png
Checksum: 0x262f [unverified]
[Checksum Status: Unverified]
Urgent pointer: @

v Options: (12 bytes), No-Operation (NOP), No-Operation (NOP), Timestamps

» TCP Option - No-Operation (NOP)

» TCP Option - No-Operation (NOP)

» TCP Option - Timestamps: TSval 824635422, TSecr 3249934137

to t
[The RTT to ACK the segment was: 0.002592000 seconds]

v

v [Expert Info (Warning/Sequence): Previous segment not captured (common at capture start)]
[Previous segment not captured (common at capture start)]

[Severity level: Warning]

[Group: Sequence]

EPUB/images/ws-packet-format.png
Packet Format

Summary line
Include column headings
Details:

All collapsed
o As displayed

All expanded
Bytes

Print each packet on a new page
Capture information header

EPUB/images/ws-pref-filter-buttons.png
M Vireshark Preferences

~ Appearance
Columns.
Font and Colors
Layout
Capture
Expert
Filter Buttons
Name Resolution
> Protocols
RSAKeys
> Statistics
Advanced

Showintoolbar Button Label _Filter Expression Comment
TPsyn tepflagssyn Fitter TP Syn

+] =]] Al ¥ @ | Copyirom Ci\Users\username\AppData \Rsaming\Wireshark\dfiter buttons

oK Cancel Help

EPUB/images/toolbar/x-capture-start.png

EPUB/images/ws-wireless-ieee-80211-pref.png
M Wireshark - Preferences

FIOFSDATA | 1e¢€ 80211 wireless LAl

ot 2 Reassenbe fragnented 02 11 dotorans
HisLP 0 foore v spesic T cements
s ol sbssctrfor evanemtied 50211 fames
iy [Rp—
HPFEEDS |] Vadote e S chckumifpese
HSMS. Ignore the Protection bit

SR o

il O Yes -withaut v

o O ves-wintv

we 0] Ensie PA Key MIC Lengih overide
4 WPA Key MIC Length override [0
Icap feycte

s Denase.

P Deayption

@

ca

IEC 60870-5-

IEC 60870-5-

esEenzn

EE 802 15 4 [0

EPUB/images/ws-pingpongprotocol-statistics.png
Wireshark - PingPongProtocol Statistics - pingpong.pcap

PingPongProtocol Message Type~ Messages Messages Share (%) Bytes (B) Bytes Share (%) First Seen(s) LastSeen(s) Interval(s) Message Rate (Msg/s) Byte Rate (B/s)
PingPongProtocol Ping 65 50.000000 3631 46.658957 7.743663 39.807890 32.064227 2.027181 113.241464

PingPongProtocol Pong 65 50.000000 4151 53.341043 7.744691 39.808097 32.063406 2.027233 129.462229

Display filter: Apply
Copy Saveas... ©Lukk

EPUB/images/ws-pref-statistics.png
M Vireshark Preferences

~ Appearance

Columns.
Font and Colors
Layout

Capture

Expert

Fiter Buttons

Name Resolution

Protocols

RSA Keys

Statistics

Advanced

Statistics

Tap update interval in ms [3000

Enable the calculation of burst information

[Show burst count for item rather than rate.

Burst rate resolution (ms) 5

Burst rate window size (ms) 100

Defautt sort column for stats.tree stats | Item count
Default stats_tree sort order s descending
Case sensitive sort of stats_tree item names

Always sort 'range’ nodes by name.

Always sort 'range’ nodes in ascending order

] isply th ull sats tee plugrin name

EPUB/images/ws-decode-as.png
Field

Value | Type Default | Current

v |

| mse || © el |

EPUB/images/ws-go-menu.png
M odd-nttppcap
Fle Edt View |Go| Capture Anslyze Stotsics Telephony Wireless Tools Help
A8 0O = cowran cu-6 QQqam

Goto Linked Pacet 3) epresson.. +
Next Packet Ctrl+Down otocol _ Length Info
. 3 1456 [TC segrent of 3 reassenbled POU
& Previous Packet Ctrl+Up L == |
30.0573 § FirstPacket CurleHome cp 1454 [1CP segnent of 3 reassenbled PDU]
40.02578 & LastPacket Ctri+End P 54 [TCP Window Update] [TCP ACKed unseen 5.4 [ACK] Seq-l Ack-11201 Win-63000 Len-0
= AutoScrollin Live Capture
7 010293900 TIT Tonn cP 155 [1CP segnent of 5 reassenbled PDU]
9 0.120265 200.121.1.131 _ 172.16.0.122 TP 155 [1CP segnent of 5 reassenbled PDU]
110.156162 200.121.1.131 172.15.0.122__TCP 155 [1CP segnent of s reassenbled PDU]
130179506 200.121.1.131 172.15.0.122__TCP 155 [1CP segnent of s reassenbled PDU]
Frane 1 1454 bytes on wire (11632 bits), 1456 bytes captured (11632 bits)
Sthernet 1T, Src: Vmiare_co:00:01 (00 61), Dst: Vimare_42:12:13 (00:0c:29:42:12:13)
Internet protocol Version 4, Srci 200.121.1.131, Dst: 172.16.0.122
Transmission Control Protocol, Src Ports 10554 (10554), Dst Port: 50 (80), Seq: 1, Ack: 1, Lem: 1400
0 6c 25 42 12 13 00 50 55 cO 00 0L 05 00 45 00)6 B
05 20 01 41 00 00 63 05 d3 90 C3 79 01 83 3 10 L..A.. ...y,
0 73 25 33 00 50 37 5 04 43 €2 22 ze bT 50 10)P\ ...
£ £ 77 67 00 00 30 3¢ 73 5777 5174 45 79 3 L.ug..0T SMQEEYN
45613376 70 74 44 63 51 4F 2f 6b 75 31 41 52 Eadxptoc QO/KuLAR
S2 65 4759 67 53 32 41 34 4759 35 31 56 33 32 RFGVgS2A 4OVSIV2 .

Q7 Packets: 3083 - Displayed: 3083 (100.0%) - Load tme: 0:0.100 || Profile: Default

EPUB/images/ws-wireless-key-examples.png
M WEP and WPA Decryption Keys

Keytype Key
wep 0102030405060708090a0b0c0d.
wpa-pwd MyPassword:MySSID
wpa-pwd MyPassword
Wpa-psk 266e97b9a1008a97285c78c2b05082bed3541d3d01 16560128 TF3c18563797

AERREME o toRpamglWreshorkiso2is ke

3 Copyfrom | | Cancel Help

EPUB/images/ws-capture-options-options.png
Wireshark - Capture Options.
pture Opt

Input | Ouput Optons

Display Options

ipdste st of packets n real-tme

wtomaticaly scrol during lve capture:

O Show capture information during ive capture:

Stop capture automaticaly sfter

Of: 2] pacets
2] fies
1 2/ [kdobytes
Of: 2] [seconds v

Neme Resolution

Resolve MAC Addresses
O Resolve network names

[Resolve transport names.

Start

EPUB/images/toolbar/document-open.png

EPUB/images/ws-time-shift-details.png
Encapsulation type: IEEE 862.11 plus radiotap radio header (23)
Arrival Time: May 3, 2015 15:19:18.180330000 EDT

UTC Arrival Time: May 3, 2015 19:19:18.180330000 UTC

Epoch Arrival Time: 1430680758.180330000

[Time shift for this packet: 18000.000000000 seconds]

[Time delta from previous captured frame: 0.005614000 seconds]
[Time delta from previous displayed frame: ©.005614000 seconds]
[Time since reference or first frame: ©.008157000 seconds]
Frame Number: 5

Frame Length: 62 bytes (496 bits)

Capture Length: 62 bytes (496 bits)

[Frame is marked: False]

[Frame is ignored: False]

[Protocols in frame: radiotap:wlan_radio:wlan:1llc:eapol

EPUB/images/ws-diagram-pane.png
NI .
NI .
Total Length
Fragment Offset
Header Checksum

EPUB/images/ws-help-menu.png
M odd-http.pcap o X
Fle Edt View Go Copture Analyze Stafitics Telephony Wireless Tools | Help
am g0 IDMBRes=F 85 aaaH Contents Fl
W ool o dsploy fter __<cui> Manual pages v Boresson.. | +
No. Time Source Destnaton Frotocd Lerot T g Webste
10.000000 200.121.1.131 172.16.0.122 __TCP sese | © d Pou]
30.025738 200.121.1.131 172.16.0.122 TcP 1454 [M Ask(Q&A) d PDU]
40.025749 172.16.8.122 200.121.1.131 TCP. 54 | Downloads (ed unseen 5.4 [ACK] Seq=1 Ack=11201 Win=63600 Len=0
A vii
70102939 200.121.1.131 _ 172.16.0.122 ___TCP 1456 1 Sample Coptures 4 PU]
50.128255 200.121.1.131 _ 172.16.0.122 __TCP 1458 | Check for Updates 3 PoU]
110154162 200.121.1.131 172.15.0.122 __TCP 1454 | About Wireshark 4 PDU]
13 0.179906 200.121.1.131 172.15.0.122 _TCP 1454 [TCP segnent of a reassembled PDU]
Frame 1: 1454 bytes on wire (11632 bits), 1454 bytes captured (11632 bits)
Ethernet II, Src: Vmare_c0:00:01 (00: 1), Dst: Vmare_42:12:13 (80:0c:29:42:12:13)
Internet Protocol Version 4, Src: 200.121.1.131, Dst: 172.15.0.122
Transmission Control Protocol, Src Port: 10554 (18554), Dst Port: 50 (30), Seq: 1, Ack: 1, Len: 1400
@0 6c 29 42 12 13 00 50 56 <0 00 6L 65 00 45 00 ..)B -
©5 20 0L 41 00 00 62 05 d3 90 B 79 BL 83 ac 10 ...A..3. ...y..
90 72 29 3a 00 50 a7 Sc 04 43 €2 22 ee b 50 10 .1):.P.\ H....P.
£F £F 77 67 00 00 30 54 73 57 77 5174 45 79 de ..ug..0T SWQEEYN
456133 78 70 74 44 63 51 4F 2 Gb 75 31 41 52 EadxptDe QU/KULAR
52066 47 59 6753 32 41 34 47 59 35 31 56 33 32 RFGYES2A 4GYSIV32 .
[S Packets: 3083 - Displayed: 3083 (100.0%) - Load tme: 0:0.100 || Profile: Default

EPUB/images/ws-print.png
[JOX) Wireshark - Print

Packet Format

Summary line
Include column headings
Details:

) All collapsed
© As displayed
) All expanded
[Bytes
[Print each packet on a new page
Capture information header

+ and - zoom, O resets

Packet Range
" captured @ Displayed
o All packets 55883 55883
) Selected packets only 1 1

) Marked packets only

) First to last marked

) Range:

0
0
0
0

o O o o

] Remove ignored packets

. Help = Page Setup... | ~ Cancel

EPUB/images/ws-netperfmeter-statistics.png
2 Wireshark - NetPerfMeter Statistics - netperfmeter.pcapng.gz VoA @

NetPerfMeter Message Type ~ Messages Messages Share (%) Bytes (B) Bytes Share (%) First Seen(s) LastSeen(s) Interval(s) Message Rate (Msg/s) Byte Rate (B/s)
NetPerfMeter Stop Measurement 1 0.072727 16 0.00154715.615367 15.615367
NetPerfMeter Start Measurement 1 0.072727 16 0.0015475.101148 5.101148
NetPerfMeter Results 119 8.654545 143826 13.909671 16.092542 17.398333 1.305791 91.132512 110144.745356
NetPerfMeter Remove Flow 21 1.527273 378 0.036557 16.138949 17.390667 1.251718 16.776940 301.984921
NetPerfMeter Identify Flow 21 1.527273 546 0.0528050.038833 4.887197 4.848363 4.331359 112.615322
NetPerfMeter Data 81.890909 883584 85.452998 5.096823 15.601192 10.504369 107.193493 84115.857472
NetPerfMeter Add Flow 21 1.527273 4074 0.3940040.019316 4.881874 4.862558 4.318715 837.830694
NetPerfMeter Acknowledge 65 4.727273 1560 0.150870 0.038538 17.395701 17.357164 3.744851 89.876436
Display filter: ‘Apply‘

Copy Saveas... ©Lukk
R —

EPUB/images/ws-statusbar-profile.png
V Default
Small Main Window
Syscalls

WiFi

Bluetooth
Classic

EPUB/images/ws-tel-rtpstream-analysis_1.png
Wireshark - RTP Stream Analysis - SIP_CALL RTP_G711.pcap

Stream 0 % | Stream 1 % Stream 2 X Graph %

Stream

(0x58f33dea)

200.57.7.199:4800 -
200.57.7.196:40378

331

578
534

0x58f33dea 538

Max Delta 379.905000 ms @ 556 540
Max Jitter 0.250686 ms 542
Mean Jitter 0.098372 ms 544

556
Max Skew -0.855000 ms 588

RTP Packets 891 502

Expected 891 506
Lost 0 (0.00 %) 600
SeqErrs 0 604
Startat 8.529324s @ 522 608
Duration 26.38s 612
Clock Drift 1 ms 616

Freq Drift 8000 Hz (0.00 %) ;ég

734
736

G: Go to packet, N: Next problem packet

T1332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350

Delta (ms)
0.000000
19.937000
19.942000
20.185000
19.945000
19.951000
19.799000
379.905000
640.189000
20.185000
19.940000
19.942000
19.943000
20.186000
19.942000
19.813000
1080.160000
19.941000
19.944000
19.943000

Jitter (ms) Skew Bandwidth Marker
0.000000 0.000000
0.003938 0.063000
0.007316 0.121000
0.018422 -0.064000
0.020708 -0.009000
0.022476 0.040000
0.033634 0.241000
0.037469 0.336000
0.046940 0.147000
0.055569 -0.038000
0.055846 0.022000
0.055980 0.080000
0.056044 0.137000
0.064166 -0.049000
0.063781 0.009000
0.071482 0.196000
0.077014 0.036000
0.075888 0.095000
0.074645 0.151000
0.073543 0.208000

DR R NN

Prepare Filter -||i- Play Streams ||| Export

EPUB/images/ws-tel-rtpstream-analysis_2.png
Wireshark - RTP Stream Analysis - SIP_CALL RTP_G711.pcap

Stream 0 % Stream 1 % Stream 2 % | Graph %

7
£
@
2
s

N
=]
3
3

10 15

v/l Stream 0 v/ @ Stream 0 Jitter v/ X Stream 0 Difference
v/l Stream 1 v @Stream 1 Jitter v/ X Stream 1 Difference
v/l Stream 2 v @ Stream 2 Jitter v/ X Stream 2 Difference

20
Arrival Time

v/ A Stream 0 Delta
v/ A Stream 1 Delta
v/ A Stream 2 Delta

Help

| Prepare Filter -

I Play Streams Export

* Close

EPUB/images/ws-tel-rtpstream-analysis_3.png
Wireshark - RTP Stream Analysis - SIP_DTMF2.cap

Stream 0 % | Stream 1 ¥ = Graph %

Stream Packet - Sequence Delta (ms) Jitter (ms) Skew Bandwidth Marker Status
1028 53232 30.003000 __ 0.009404 -0.662000 76.16

192.168.105.110:4374
Tos 1081051724376 1030 53233 30.000000 0.008817 -0.662000 76.16
SESTe 1032 53234 30.013000 0.009078 -0.675000 76.16
SSRC 0x9a7b5382 1034 53235 29.988000 0.009261 -0.663000 76.16
Max Delta 60.002000 ms @ 1047 1036 53236 30.004000 0.008932 -0.667000 76.16
Max Jitter 0.019477 ms 1038 53237 30.031000 0.010311 -0.698000 76.16
1040 53238 29.975000 0.011229 -0.673000 76.16
:“';{:“e' 00'0:5947::0'"5 1042 53239 30.003000 0.010715 -0.676000 76.16
ax Skew -0 ms 1044 53240 30.005000 0.010358 -0.681000 76.16

RTP Packets 665

Expected 667 1049 53243 29.991000 0.009783 -0.674000 73.92
Lost 2(030%) 1051 53244 30001000 0009234 -0.675000 73192
SeqErrs 2 1053 53245 30.002000 0008782 -0.677000 73.92
Startat 76.828507 s @ 27 1055 53246 30010000 0.008858 -0.687000 73192
Duration 19.98 1057 53247 30001000 0008367 -0.688000 73192
Clock Drift -1 ms 1059 53248 30.004000 0008094 -0.692000 73192
i g 1061 53249 29.994000 0.007963 -0.686000 73192

G BT 1063 53250 30004000 0.007716 -0.690000 73.92
1065 53251 30000000 0007233 -0.690000 73192

1067 53252 30.004000 0.007031 -0.694000 73192

<

[SENENENENENRNEN

N NSRS

G: Go to packet, N: Next problem packet
Help | Prepare Filter - Play Streams Export -|| x Close

EPUB/images/ws-pref-name-resolution.png
M Vireshark Preferences

~ Appearance

Columns.
Font and Colors
Layout

Capture

Expert

Fiter Buttons

Name Resolution

Protocols

RSAKeys

Statistics

Advanced

Name Resolution
Resolve MAC addresses

] Resolve transport names
[0 Resolve network (IP) addresses.
Use captured DNS packet data for name resolution

Use your system's DNS seftings for name resolution
[Use a custom list of DNS servers for name resolution

DNS Servers | Edit..

Maximum concurrent requests 500

1 Only usethe profle *hosts* il
[Resolve VLAN D

[Resolve S57PCs

[Ensble OID resolution

1 Suppress SMi errors

SMI (MIB and PIB) paths | Edit...

SMI (MIB and PIB) modules | Edit...

Enable IP geolocation

MaxMind database directories | _ Edit..

oK

Cancel

Help

EPUB/images/related-request.png

EPUB/images/ws-manage-interfaces.png
M Manage interfaces

LocalInterfaces Pipes

Remote Interfaces:

Show Friendly Name.
Ethernet
Adapter for loo.
Cisco remote c.
SSH remote cap.

Interface Name Comment

\Device\NPF_{A86CD163-D375-47C3-24AD-FE438F24AE0} Intel(R) PRO/1000 MT Network Connection
\Device\NPF_Loopback

ciscodump

Sshdump

EPUB/images/toolbar/x-colorize-packets.png

EPUB/images/ws-tel-playlist.png
Flow Sequence
dialog

VolP Calls SIP Calls
dialog dialog

RTP Streams
dialog

Stream Analysis RTP Player
dialog dialog

Set Playlist/
——> Addto Playlist/
Remove from Playlist

EPUB/images/toolbar/go-next.png

EPUB/images/ws-export-selected.png
- e@meEr

111 Packet Analyss Data

Neme T ostemodies Type
No items match your search.

e
=
et
|

INFS bytes dat
[Faw data (i, dat “raw)

20bytes ofraw binary data wil be witen

EPUB/images/ws-about-codecs.png
About Wireshark

Wireshark | Authors | Folders | Plugins | Keyboard Shortcuts | Acknowled| »|

Search Plugins. | Filter by type: |codec ~

Name Version Type Path

g71Lso 1.0 codec /../codecs/g711.50
g722.50 1.0 codec /../codecs/g722.50
g726.50 1.0 codec Jcodecs/q726.50
g729.50 1.0 codec Jcodecs/g729.50
116mono.so 1.0 codec .Icodecs/I16mono.so
sbc.so 1.0 codec /.../codecs/sbc.so

EPUB/images/toolbar/x-capture-stop.png

EPUB/images/related-last.png

EPUB/images/ws-file-import-regex.png
HexDump Regular Expression

Packet format regular expression

A@edin (<)@ <time> (\D)H2N\d)\s+ (7 <seqno>\d{5})\s+ (< data> [0-Sa-FA-FIJS\s+

Missing capuring group da use (acaasigey.))

Data encoding:

Plain hex

Direction indication: il<

recommensed regex: (P<cota>(0-S0-)

00>

B Py D

EPUB/images/ws-stats-plots.png
M Wireshark - Plots - http.cap

EY

2

10

15000

10000

Wireshark Plots: http.cap

Plots

Frame num.

=

15 E)

Time (5) [relative to firt data point]

ik o seleepockee 40 17505746537 = 18365).

2 EY

trbled Growp® Plthame sl Fir Color Syle | Vrila [yw—
Frome num. W e frome.number 1
Seq.num. itep.sreport == 80 [l Dot Step Line tep.seq. 1

= A= pr—— sor | [oy | [e

EPUB/images/toolbar/filter-toolbar-clear.png

EPUB/images/ws-diagram-pane-popup-menu.png
Pev v b S e b
Destination
Source Show Field Velues
Save Diagram As...
Tye Diagram
Copy as Rester Image.
Internet Protocol Version 4
Pov ey P S e b
Version | Hesdert. | Dfwentited seviees Total Length
Identification Flags Fragment Offset

EPUB/images/ws-filter-toolbar.png
frame contains "squirrels"

®RE3 -] +

Squirrels

EPUB/images/toolbar/x-reset-layout_2.png

EPUB/images/ws-filters.png
[JON] Wireshark - Display Filters

Filter Name v | Filter Expression
Ethernet address 00:00:5e:00:53:00 eth.addr == 00:00:5e:00:53:00
Ethernet type 0x0806 (ARP) eth.type == 0x0806
Ethernet broadcast eth.addr == ff:ff:ff:ff:ff:ff
No ARP not arp
IPv4 only ip
IPv4 address 192.0.2.1 ip.addr == 192.0.2.1
IPv4 address isn't 192.0.2.1 (don't use != for this!) !(ip.addr == 192.0.2.1)
IPv6 only ipv6
1PV address 200T:dbgz1 YR RTEpTET| |
TCP only tcp
UDP only udp
Non-DNS !(udp.port == 53 || tcp.port == 53)
TCP or UDP port is 80 (HTTP) tcp.port == 80 || udp.port == 80
HTTP http
No ARP and no DNS not arp and !(udp.port == 53)
Non-HTTP and non-SMTP to/from 192.0.2.1 ip.addr == 192.0.2.1 and not tcp.port in {80 25}
+ (= ||

Help Cancel

EPUB/images/ws-expert-colored-tree.png
eader length: 20 bytes

® Differentiated services Fleld: 0x00 (DSCP Ox00: Default; ECN: Ox00)
Total Length: 82
1dentification: Ousof (17823)

® Flags: 0x00
Fraguent offset: 0

Protocol: uoe (0x11)
@ Weader checksum: OxdOe [correct]
Source: 192.168.2.6 (192.168.2.6)
Destination: 224.0.0.107 (224.0.0.107)
| User Datagram Protocol, Src Port: ptp-event (319), Dst Port: ptp-event (319)
|« precision Time Protocol (16EE1588)

EPUB/images/ws-view-menu.png
Statistics Telephony Wireless Tools

1

Shift+Right
ShiftsLeft
Ctr+Right
CtreLeft

»

Ctrl+Shift-W
Ctrl+Shift-R

Ctrl+Shift+F
R

b

®QeQm

B3]+

Protocol

Length shift count

Fiags

Info

fred (624 Tnternet Protocol Version 4
Pev iy by NI .
Version [Hestert | Dffwersaed Swvies 7 Total Length
dentification Flags Fragment Offset
Time to Live Protocal Header Checksum
Source Address

Destination Address

Transmission Control Protocol

‘Source Port

Destination Port

‘Sequence Number

Acknowledgment Number

M hitp-o00.peap
File Edit | View Go Copture Analyze
A4 W 0 [V MeinToolbar
[ienyod ¥ HiterToolbar
o ¥ Status Bar
1
3 Elsaen
V' Packet it
¥ Packet Detit
Packet Bytes
7 [V Packet Diagram
s
Time Display Format
Name Resolgtion
1
2 Zoom
2 ExpandSubtress
Collspse Subtrees
Expand All
|
Transmi = Colorize Packet Lit
Coloring Rules..
Colorize Conversstion
Reset Layout
FE Resize Columns.
Intemals
Show Packet in New Window
Reload as ile Format/Capture
& Reload
<
© 7 http-ooo.pcap

Packets: 16 - Displayed: 16 (100.0%)

Profile: decode_as_prefs

EPUB/images/ws-coloring-fields.png
Fle Edt View Go Capture Anslyze Sattcs Teephony Help
@ U Resm aaanm

tcp.analysis.flags X] New Label

Time. Destination Protocol

150 4.959694 192.168.77.10 67.225.110.1.. [TCP window
151 4.959879 192.165.77.10 67.225.110.1.. [TCP Window

292 5.257073 192.168.77.10 67.225.110.1.. [TCP window
414 5.464495 192.168.77.10 67.225.110.1.. [TCP window
415 5.464581 192.168.77.10 67.225.110.1.. [TCP window

1362 6.351114 192.165.77.10 67.225.110.1.. [TCP Window

4 Frame 176: 1506 bytes on wire (12043 bits), 1506 bytes captured (12048 bits)
Encapsulation type: Ethernet (1)

Arrival Time: Apr 24, 2009 17:05:50.953433000 Pacific Daylight Time

[Time shift for this packet: 0.000000000 seconds]

Epoch Tire: 1240617950.95348500@ seconds

[Tine delta from previous captured frame: 0.002214000 seconds]

[Tine delta from previous displayed frame: 0.000000000 seconds]

[Tine since reference or first frame: 4.777167000 seconds]

Frame Nurber: 176

Frame Length: 1506 bytes (12048 bits)

Capture Length: 1506 bytes (12043 bits)

[Frame is marked: False]

[Frame is ignored: False]

[Protocols in frame: eth:ethertype:ip:tcp]

[Coloring Rule Name: Bad TCP]

[Coloring Rule String: tcp.analysis.flags 8& ltcp.analysis.window_update]

b Ethernet IT, Src: 3com 8d:d6:c7 (00:60:08:8d:d6:c7), Dst: Fujitsu 84:31:92 (00:17:42:84:31:92)

b Internet Protocol Version 4, Src: 67.228.110.120 (67.228.110.120), Dst: 192.168.77.10 (192.168.77.10)

@ [#] The frame matched the coloring rule with this name (frame. coloring_rule.name) || Packets: 20136 - Displayed: 157 - Marked: 0 - Load time: 0:0.335 || Profie: Defauit

EPUB/images/ws-capture-interfaces-main-win32.png
Capture

] [Allinterfaces shown v

wingtis fiter: (I [Eoter 3 capire Al
{Ethemet] SN DY AR e
‘Adapter for loopback trafic capture b

Cisco remote capture

@®
@®

SSH remote capture

EPUB/jacket/front-cover.png
Wireshark User's Guide

/T
WIRESHARK

EPUB/images/ws-pref-expert.png
Field name

tep.connection.syn

!

m Al v

Copyfrom

C\Users\username!

Doto\Roaming|Wireshark\expert seve:

EPUB/images/ws-filter-add-expression.png
Wireshark - Display Filter Expression

Field Name Relation
20West - 29West Protocol = [is present
» 2dparityfec - Pro-MPEG Code of Practice #3 release 2 FEC Protocol
» 3COMXNS - 3Com XNS Encapsulation -
» 3GPP2 ALL - 3GPP2 A1L
» GLOWPAN - IPVG over Low power Wireless Personal Area Networks
» 80211 Radio - 802.11 radio information
» 802,11 Radiotap - [EEE 802.11 Radiotap Capture header
» 802,11 RSNA EAPOL - IEEE 802.11 RSNA EAPOL key contains
» 802.3 slow protocols - Slow Protocols matches
» 9P Plan 9 in
» Acbis OML - GSM A-bis OML
» A21- A21 Protocol
» AAF - AVTP Audio Format

AALL - ATM AALL
AAL3/4 - ATM AAL3/4

AARP - Appletalk Address Resolution Protocol
AASP - Aastra Signalling Protocol

ACAP - Application Configuration Access Protacol
ACF - ACF Message

ACN - Architecture for Control Networks

ACP133 - ACP133 Attribute Syntaxes Predefined Values
ACR 122 - Advanced Card Systems ACR122

ACSE - IS0 8650-1 0S| Association Control Service

ACtrace - AudioCodes Trunk Trace

ADB - Android Debug Bridge

ADB C5 - Android Debug Bridge Client-Server

ADB Service - Android Debug Bridge Service

ADP - Aruba Discovery Protocol

ADwin - ADwin communication protocol

ADwin-Config - ADwin configuration protocol

Aeron - Aeron Protocol

AFP - Apple Filing Protocol

AFS (RX) - Andrew File System (AFS)

AgentX - Agentx

AH - Authentication Header

AIM - AOL Instant Messenger

AIM Administration - AIM Administrative

AIM Advertisements - AIM Advertisements

»_ AIM BOS - AIM Privacy Management Service ~| Range (offset:length)

Value

Search:

EPUB/images/ws-edit-menu.png
M odd-nttppcap

File | Edit | View Go Capture Analyze

Statistics Telephony Wireless Tools Help

A1 copy v = aaaH
| R FindPacket, CuleF 3) oresson.. | +
No. Find Next Cerl=N Protocol Length Info
Find Previous culp e 156 [TCP segrent of 3 reassenbled pDU]
Mark/Unmark Packet Curtem 3 1454 [1CP segnent of 3 reassenbled PDU]
Mark AllDiplayed CuteshifteM f1__TCP. 54 [TCP indow Update] [TCP ACKed unseen 5.4 [ACK] Seq-L Ack=11201 Win=63000 Len-0
Unmark All Displayed Mets+AlteM
Next Mark. Meta+ShiftN TP 1454 [TCP segment of a reassembled PDU]
Previous Mark Mets-ShiftB
e 155 [1CP segnent of 5 reassenbled PDU]
gnore/Unignore Packet CtileD.
Ignore All Displayed CueshiteD co 155 [1CP segnent of s reassenbled PDU]
Unignore All isplayed CurleAltsD
e 155 [1CP segnent of s reassenbled PDU]
SetUnset Time Reference Ctl=T v
5 F UnsetAllTimeReferences CtieAteT [bytes captured (11632 bits)
B Nt TimeReference CuleAteN 61), Dst: Vimare_42:12:13 (00:0c:29:42:12:13)
o Previous Time Reference Ctrl+Alt+B. 31, Dst: 172.16.0.122
b 4 (10554), Dst Port: 0 (80), Seqi 1, Acki 1, Len: 1400
Time Shit. CurleshitT
Packet Comment.
Configuration Prfies Curlehite
Preferences CurlehitP
0 6c 25 42 12 13 00 50 55 cO 00 0L 05 00 45 00)6 B
05 20 01 41 00 00 63 05 d3 90 C3 79 01 83 3 10 L..A.. ...y,
0 73 25 33 00 50 37 5 04 43 €2 22 ze bT 50 10)P\ ...
£ £ 77 67 00 00 30 3¢ 73 5777 5174 45 79 3 L.ug..0T SMQEEYN
45613376 70 74 44 63 51 4F 2f 6b 75 31 41 52 Eadxptoc QO/KuLAR
S2 65 4759 67 53 32 41 34 4759 35 31 56 33 32 RFGVgS2A 4OVSIV2 .

kS

Packets: 3083 - Displayed: 3083 (100.0%) - Load tme: 0:0. 100

Profie: Default

EPUB/images/toolbar/zoom-in.png

EPUB/images/toolbar/filter-toolbar-recent.png

EPUB/images/ws-stats-conversations.png
[X X J Wireshark - Conversations - Wi-Fi: en0

Conversation Settings Ethernet - 29 _ IPv6-12 TCP-28 UDP-129
Address A ~ | Address B | Packets| Bytes| Total Packets| Percent filtered | PacketsA->B| BytesA>B| PacketsB->A| PacketsB->A| Rel Start|

0.0.0.0 255.255.255.255 1 383 bytes 1 100.00% 1 383 bytes 0 0 bytes 34.656060

Absolute start time 142.250.186.67 192.168.1.85 4 301bytes 30 13.33% 2 148 bytes 2 153 bytes 31.378530

¥ Limit to display filter 142.250.186.165 192.168.1.85 28 12,467 KiB 29 96.55% 16 8,460 KiB 4,007 KiB 0.000000

152.199.19.160 192.168.1.85 7 543bytes 7 100.00% 4 345 bytes 198 bytes 7.470308

162.159.134.234 192.168.1.85 43 5,452KiB 43 100.00% 22 4,239 KiB 1,213 KiB 8.030960

172.65.251.78 192.168.1.85 23,745 KiB 100.00% 15,616 KiB 8,129 KiB 1.374770

172.104.245.130 192.168.1.85 5,221 KiB 66 100.00% 35 2,559 KiB 2,662 KiB 5.196435

17221718106 192.168.1.85 3,502 KiB 29 100.00% 16 1716 KiB 1,786 KiB 12.638637

192.168.1.1 192.168.1.255 600 bytes 10 100.00% 10 600 bytes 0 bytes 6.083682

192.168.1.1 224.0.0.251 56,480 KiB 100.00% 56,480 KiB Obytes 0.555528

192.168.1.1 255.255.255.255 720 bytes 12 100.00% 12 720 bytes 0 bytes 0.862892

192.168.1.21 192.168.1.255 1,295 KiB 10 100.00% 10 1,295 KiB 0 bytes 1.476232

192.168.1.21 255.255.255.255 792 bytes 4 100.00% 4 792 bytes 0 bytes 8.848800

192168.1.35 224.0.0.251 279 bytes 1 100.00% 1 279 bytes 0 bytes 43.258929

192168.1.35 239.255.256.250 50,372 KiB 93 100.00% 93 50,372KiB Obytes 19.908648

192168.1.36 224.0.0.251 1,633 KiB p) 100.00% 2 1,633 KiB 0 bytes 39.577346

|[Protoco 192168..54 192.168.1.85 120 bytes 2 100.00% 54 bytes 66 bytes 33.074264

Bluetooth 192168..54 224.0.0.251 326 bytes 100.00% 326 bytes 0 bytes 29124620

DCCP 192168..85 17.248.145.106 28,001 KiB 100.00% 11,065 KiB 16,936 KiB ~ 53.787326

Ethernet 192168.1.85 3113.84.51 1,813 KiB 100.00% 1,011KiB 822 bytes 3.847714

FC 192168.1.85 3113.84.52 1,750 KiB 100.00% 1,107 KiB 658 bytes 2.200680

FDDI 192168..85 35.186.224.25 2,550 KiB 4419% 782 bytes 1,786 KiB 13.462394

oo 192168..85 35.186.224.40 1,355 KiB 100.00% 700 bytes 688 bytes 10.725210

T 192168..85 35.186.224.47 5,505 KiB 100.00% 1,143 KiB 4,362 KiB 17.476152
s 192168..85 54.216.252.255 1,230 KiB 100.00% 805 bytes 455 bytes 3.428718 100
192168.1.85 104.199.65.124 363 bytes 100.00% 209 bytes 154 bytes 40114078 59
IRV 192168..85 136.143.190.75 9,621KiB 100.00% 2,975 KiB 6,646 KiB 0.855213 100
IPv6 192168.1.85 142.250.186.74 39,547 KiB 100.00% 10,481 KiB 29,065 KiB 53.775691 1
JXTA 192168185 172.217.18.1 49,088 KiB 100.00% 10,907 KiB 38181KiB 54.327884 30.
MPTCP 192168.1.85 192.168.1.21 670 bytes 100.00% 390 bytes 280 bytes 1477461 97,
NCP 192168..85 192.168.1.32 46 bytes 100.00% 46 bytes 0 bytes 20.597148 o.
neun 192168..85 192.168.1.250 3,768 KiB 100.00% 1,433 KiB 2,335 KiB 14918659 39

0
0
0
(]
0
0
0
0
1
(0]

mobrRBIvamEINNT

EPUB/images/ws-mate-gop_analysis.png
MATE's GoP Analysis phase

(\mnﬂynd)
GoP e

N

EPUB/images/ws-time-reference.png
7 test. pcap - Wireshark

Fle Edt Vew Go Caphwe fnalyze Statitics Hep

SEe e @ xea Beso7 e HE..
(e | ~ 4 poresson.. Yucear o aorly

No.- | Tine Saurce. Destination Protocal Info

1.025655 11650, igmp.mcast. net V3 Membership Report.
1.044366 1168.0. 152.168.0.1 Standard query SRV _ldap._tcp.nbg
1.048652 1168.0. 235.255.255. 250 Source port: 3193 Destination po
1.050784 1168.0. 152.168.0.1 Standard query SOA nb10061d.ww04
1.055053 1168.0. 192.168.0.2 Source port: 1900 Destination po

ndard query

17 0.136410 192.168.0. 192.168.0. 1025 > 5000 [5YN] se

TqeRETFTERTTon T OWIEa7 (6215

Flags: 0x00

Fragrent offset: 0

Time to live: 128

Protocal: UDP (Ox11)

Header checksum: Oxal09 [correct]

Source: 192.168.0.2 (192.168.0.2)

Destination: 192.168.0.1 (192.168.0.1)
00000 03 55 24 75 33 00 0F 53 20 <3 02 0%
010 00 43 18 47 00 00 80 11 al 03 <0 a 00 S,
020 00 01 O d2 00 35 00 35 46 63 00 21 01 R
030 00 00 00 00 00 00 09 70 72 6F 7 79 63 111l roxycont
040 05 77 77 30 30 34 07 73 63 65 6d 65 6= L0045 iemens.n
05065 74 00 00 01 00 01 L3000

[Fi: ifest.pap” 14 KB 00:00:02 [P 1200/ 12075

EPUB/images/ws-open-qt5.png
@00 IX| Wireshark - Open Capture File

Look i | 88 /home/gerald/Documents/Captures 20 0 0o @B E
B computer Name v Ssize Type Date Modified A
B coptures [ascend.trace.gz 22KB gzFile 11/25/99 7:00 PM

| brocade-ipvé.pcap 1KB peap File 8/16/10 7:45 PM

) buildbot test.pcap 2.5MB peap File 6/10/09 9:12 PM

9 call peap 347 K8 peap File 9/28/15 9:57 PM

) cap-ospf-hello 400...tes File 8/16/98 7:52 P

9 capture.eth 3KB ethFile 12/26/99 9:55 PM

) clamd.pcap 116 K8 peap File 4/14/08 2:44 AM

rst.pcap 115.2 MB pcap File 12/1/07 4:20 AM

File name: [comcast_bt+rst.pcap

| & cancel
Files of type: | All Files BT
| Automatically detect file type B Femme Wireshark/tcpdumpy... - pcap
size: 115 MiB, 130,720 data records

Start / elapsed: 2007-12-01 04:14:30 / 00:02:27

Read filter: [Apply a read filte: J

EPUB/images/ws-follow-stream.png
[AON] Wireshark - Follow TCP Stream (tcp.stream eq 0) - test.cap

SUBSCRIBE /upnp/service/Layer3Forwarding HTTP/1.1

NT: upnp:event

Callback: <http://192.168.0.2:5000/notify>

Timeout: Second-1800

User—Agent: Mozilla/4.0 (compatible; UPnP/1.0; Windows NT/5.1)
Host: 192.168.0.1

Content-Length: @

Pragma: no-cache

HTTP/1.0 200 OK

Connection: close

Server: UPnP/1.0 UPnP-Device-Host/1.0
Timeout: Second-1800

SID: uuid:cf

3 client pkts, 4 server pkts, 3 turns.

Entire conversation (368 bytes) Show and save dataas ASCII Stream 0

Help Filter Out This Stream Print Save as... Back Close

EPUB/images/ws-export-packet-dissections.png
M Viresharic Export Packet Dissections x
Savein: [[J5ON Bpots Q@
Neme . Date modified Tpe Size
* [transactionjson 121872018 536 PM JSON File k8
Quick access
Desktop
Libraries
This PC
Netuwork
Fie name: ~ Save
Saveastpe: [JSON (o) v Cancel
[
Packet Range Packet Fomat
Packet summary ine
Ofir=co include column headngs
O Selected packet 0 o Packet detas:
Marked packets 0 0 otz ©
it 1o ast marked 0 0
Ofwge: [o o OPscketbyes
Remove lgnored packets 0 o [Eschpacketonanenpsce

EPUB/images/ws-resolved-addr.png
[J Wireshark - Resolved Addresses

- Ports Capture File Comments

Search for entry (min 3 characters) Hosts
Address | Name
34.193.49.156 www.duolingo.com

34.194.227.229 www.duolingo.com

3.94.217.247 www.duolingo.com

52.203.121.79 www.duolingo.com

216.58.201.100 www.google.com

216.58.201.68 www.google.com

172.217.23.228 www.google.com

216.58.201.74 www.googleapis.com

4718 na7an AnA e e e

EPUB/images/ws-time-shift.png
Wireshark - Time Shift x

Shift all packets by | ‘ ‘ [JhheJmm]ssf.ddd]

and extrapolate the time for all other packets [YYYY-MM-DD] hh:mm:ss(.ddd]

Undo all shifts

| Hep Apply || Close |

EPUB/images/ws-udp-multicast-stream.png
Source Address

fe80::89f:2596:fd37:a5d3
fe80::cd5:4605:831b:12d6

10.0.0.138
10.0.0.138
10.0.0.138
10.0.0.138
10.0.0.138
10.0.0.138
10.0.0.138
10.0.0.138
10.0.0.138

445 streams, avg bw: 274bps, max bw: Obps, max burst: 1/100ms, max buffer: 412B

Wireshark - UDP Multicast Streams - blbl.pcapng

Source Port | Destination Address

5353
5353
35875
58828
58740
51755
58822
57472
60765
44443
50324

Burst measurement interval (ms): 100

Stream empty speed (Kb/s): 5000

Display filter:

Copy

Save as...

ff02::fb

ff02::fb

239.255.255.250
239.255.255.250
239.255.255.250
239.255.255.250
239.255.255.250
239.255.255.250
239.255.255.250
239.255.255.250
239.255.255.250

Destination Port |
5353
5353
1900
1900
1900
1900
1900
1900
1900
1900
1900

Burst alarm threshold (packets): 50

Total empty speed (Kb/s): 100000

Packets |
3

[I G N I G G N N A I V)

Packets/s |
0.00
0.00

14.60
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Buffer alarm threshold (B):

Avg BW (bps) |

Max B
0
1

(42
(4]
o =~

'O OO0 O0OoOoOo

10000

Close

EPUB/images/ws-stats-iographs.png
Wireshark-1/0 Graphs - lots_of_dns.pcap

Wireshark 1/0 Graphs: lots_of_dns.pcap

1 secintervals
200 packets All Packets
o TCPErors
© DNSSOAreq
150 packets
100 packets
50 packets
. . N . . .« . . .
0 packets |y ® . . . ° .o . e e o
o 50 100 150
Time (5)
Click o select packet 6723 (585 =).
Enabled avgovertime GraphName Display Filter Color style ¥ Axis Y Field SMA Period Y Axis Factor
All Packets Line Packets None 1
TCPErors tep.analysis.Flags Dot Packets None 1
DNSSOAreq dns.ary.type==6 && dnsflags response==0 && dnsflags opcodex= Dot Packets None 1
+ =B}V Mouse © drags ' zooms Interval |1sec v Time of day Logscale Automatic update Enable legend
copy Copyfrom v | Close Save As...

Help Reset.

EPUB/images/ws-capture-options-compile-selected-bpfs.png
M Compiled Fittr Output

Ethernet

(002)
(e01)
(e02)
(e03)
(002)
(e05)
(005)
(e07)
(008)
(e09)
(010)
(e11)
(012)
(013)
(014)
(e15)
(015)
(e17)
(015)
(e19)

1dn
jea
1db
jea
2dn
jeq
2dn
i=a
jea
1db
jea
1dn
Jeet
oy
1dn
jeq
2dn
jeq
Pet
et

[12]
soxgedd

[20]

soxs

[54]

soxdsd

[56]

soxdsd
soxs00

[23]

soxs

[20]
soxati

4 ([14]0x)
[x+ 18]
soxdad

[x + 18]
soxdad

0

252180

jt

jt

jt

jt

2

4

15

1

19

15

15

3
3
3

3

3

3

3

3

s

19

19
19

19

13

16

19

EPUB/images/toolbar/zoom-out.png

EPUB/images/ws-stats-packet-lengths.png
[JON] Wireshark - Packet Lengths - odd-http.pcap

Topic / Item v Count Average Min Val Max Val Rate (ms) Percent @ Burst Rate Burst Start
v Packet Lengths 3083 73522 54 1514 00225 100% 0.4800 14633
0-19 0 - - - 0.0000 0.00% - -
20-39 0 - - - 0.0000 0.00% - -

40-79 1454 5718 54 78 00106 4716% 0.2100 110.479
80-159 102 86.54 82 139 0.0007 3.31% 0.1400 114685
160-319 9 267.00 180 294 0.0001 0.29% 0.0200 34.309

320-639 51 531.69 329 633 0.0004 165% 0.0200 19.120
640-1279 50 879.64 643 1093 0.0004 162% 0.0200 3.305
1280-2559 1417 1482.86 1398 1514 0.0103 45.96% 0.2400 14633
2560-5119 0 - - - 0.0000 0.00% - -

5120 and greater 0 - - - 0.0000 000% - -

Display filter: Apply

Copy Save as... Close

EPUB/images/related-dup-ack.png

EPUB/images/ws-bytes-pane-tabs.png
0000
oo10
o020
oe3e
o040
oese
oo50
ee70
oese

o
o1
o0
o
3b
a2
sc
84
<

19
4
15
da
o
o1
7
7
se

9d
o
o1
oe
o
o1
7e
3¢
54

14
o4
bb
37
E
o0
EE
47
o

7
s
29
o1

el
o0
<
o0
a5
43
70
3
55

fo
2
14
o1
a2
a0
b
e
ad

ad
o
dd
o1
a5
oy
db
o
a0

4e
54
57
o
7
e
ab
ds
21

o
<o
o
o
od
2
b7
ae
af

3b
32
a3
7d
o1
do
7
51
7%

o
1
e
55
o1
a8

15
ab

(3
3
52

o
s

34
k2

15
21
be
o
ab
ab
16
de

a8
15
ab
e

a
7
£

Frame (34 bytes)

Reassembled TCP (3091 bytes)

EPUB/images/ws-capture-info.png
A Wireshark - Capture Information 70X

ARP/RARP s Ao Mo fesdromnd

PV Ao A AN A e M A A S
1”6 L I} .
1 P S S EPRUrYl

UDP P AN A A MR AMp A
Other M ksmamaamatamasmmmansta

128308 packets, 00:01:36

Stop Capture] | close

EPUB/images/toolbar/x-capture-file-reload.png

EPUB/images/toolbar/go-last.png

EPUB/images/ws-follow-http2-stream.png
00000000 00 00 2 01 05 00 00 00
00000010 27 1d 9d 57 ae a9 bf 87
00000020 1 05 c7 9a 69 Of 7a 88
00000030 53 03 2a 2f 2a
00000000 00 00 22 01 04 00 0O
00000010 57 54 df 61 96 c3 61
00000020 34 a@ 5b b8 21 5c Ob
00000028 00 40 00 00 00 00 00
00000038 0a 00 00 00 0 49 48
00000048 0 08 06 00 00 00 7d
00000058 47 44 00 Tf 00 Tf 0O

1 client pkt, 7 server pkts, 1 turn.

Entire conversation (76 k8) v | show and save data as | HexDump v | Stream |0 O | Substream

Find:

01 82 04 8b 63 c1 ac 2a
41 8c @b a2 5c 2e 2e da
25 b6 50 c3 ab b6 25 c3

00 01 88 5 87 35 23 98
be 94 03 8a 61 2c 6a 08
ea 62 dl bf

00 01 89 50 4e 47 0d 0a
44 52 00 0 01 €0 00 00
d4 Dbe 95 69 00 00 06 62
Tf a0 bd a7 93 00 00 20

Find Next

Help Filter Out This Stream Print saveas.. Back Close

EPUB/images/ws-mate-ftp_over_gre.png
Actual Frame (uses IP over IP)

fip
Tip_omd |

Extracted FTP PDU

e e —

EPUB/images/ws-bytes-pane.png
0000
oo10
o020
oe3e
o040
oese
oo50
ee70
oese
6090

8888

2
5f
a1
o

19
a1
15
0
of

o1

sc
38
65

2
38
6c

14

35
o
o7
o1
53
55
39
62

el

4
e
55
o
2
of
a1
61

fo

28728¥RRs

ad
1

56
o
of
74
7
61

b7
a3
5f

s

7
55
7:
7

b5
35
7
59
o1
59

2
6f

3b
<o

59
7

55

55

o
a8

34
55
o

53
2
51
61

(3

a1
53
53

of
a1
7:

o1

5f
5f
2

37
74
7

4
<o

s2%8

74
31
2
<o

o1

oviecont
Tix.con.
-8
Viecontr
end-1722
1889210 s-east-1
_elb.ana zonans. !

EPUB/images/ws-list-pane.png
No. Time Source Destination Protocol Length Info

0.000000 192.168.0.21 192.168.0.1 Standard query 0x403d A moviecontrol.netflix.com

0.055880 192.168.0.1 192.168.0.21 Standard query response 0x403d A moviecontrol.netflix.com CNAME nccp-moviecontrol-fro|
! 5 0.155962 192.168.0.21 50.17.249.22 TCP 37314-443 [ACK] Seq=1 Ack=1 Win=5888 Len=0 TSval=491454408 TSecr=2102931926 =
i 6 0.163169 192.168.0.21 50.17.249.22 TLSv1 187 Client Hello =
i 7 0.250734 50.17.249.22 192.168.0.21 TCP 66 443-37314 [ACK] Seq=1 Ack=122 Win=5792 Len=0 TSval=2102931950 TSecr=491454416 =
i 8 0.252716 50.17.249.22 192.168.0.21 TLSv1 1514 Server Hello =
i 9 0.253826 192.168.0.21 50.17.249.22 TCP 66 37314-443 [ACK] Seq=122 Ack=1449 Win=8768 Len=0 TSval=491454507 TSecr=2102931950 =
i 10 0.254730 50.17.249.22 192.168.0.21 TCP 1514 [TCP segment of a reassembled PDUI]
i 11 0.254778 50.17.249.22 192.168.0.21 TLSv1 349 Certificate =
i 12 0.255853 192.168.0.21 50.17.249.22 TCP 66 37314-443 [ACK] Seq=122 Ack=2897 Win=11648 Len=0 TSval=491454509 TSecr=2102931950
i 13 0.256102 192.168.0.21 50.17.249.22 TCP 66 37314-443 [ACK] Seq=122 Ack=3180 Win=14528 Len=0 TSval=491454509 TSecr=2102931950 —
i 14 0.319870 192.168.0.21 50.17.249.22 TLSv1 264 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message]
| !; glﬂug; ;glﬂliﬂglii lgillgs.o.u TLSv1 125 Change Cipher Spec, Encrypted Handshake Message

EPUB/images/ws-fgp-statistics.png
Wireshark - FractalGeneratorProtocol Statistics - [no capture file]

FractalGeneratorProtocol Message Type = Messages Messages Share (%) Bytes (B) Bytes Share (%) FirstSeen(s) LastSeen(s) Interval(s) Message Rate (Msg/s) Byte Rate (B/s)
FractalGenerator Data 99.697723 41420688 99.986096 5.027620 117.835072 112.807452 280.681812 367180.423506
FractalGenerator Parameter 0.302277 5760 0.013904 5.006292 29.947252 24.940960 3.849090 230.945401

Display filter: Apply

Copy Saveas... ©Lukk

EPUB/images/ws-mate-mmse_over_http.png
Actual Frame.

ip 1cp [mmse.
adar [adar | | port | port | [method || host type || stas

Extracted Pou

ip 1op http.
adr [agar | [port | port | [methoa || host | | type || siaws

EPUB/images/ws-pref-advanced.png
M Vireshark Preferences

~ Appearance
Columns.
Font and Colors
Layout
Capture
Expert
Fiter Buttons
Name Resolution
> Protocols
RSAKeys
> Statistics
Advanced

Search:
Name Status Type Value
Capture
capture.auto_scroll TRUE

capture.columns
capture.device
capture.devices_buffersize
capture.devices_descr
capture.devices filter
capture.devices_hide
capture.devices_linktypes
capture.devices_monitor_mode
capture.devices_pmode
capture.devices_snaplen
capture.no_extcap
capture.no_interface_load
capturepcap_ng
capture.prom_mode
capture.real_time_update
captureshow_info
capture.update interval
Console

consoleincomplete dissectors_c... Default
Extcap Utilties

exteap.etwdump.etfile Default

<

TRUE
TRUE
TRUE
TRUE
TRUE
FALSE
100

FALSE

EPUB/images/ws-pref-rsa-keys.png
~ Appearance

Font and Colors

RSAKeys
RSA private keys are loaded from a fil or PKCS #11 token.

PKCS #11 provider libraries.

‘Add new provider... |Remove provider

EPUB/images/ws-tools-menu.png
Simple Mail Transfer Protocol
Password: cHVuanFiQDEyMhi==

M smippcap o x
Fle Edt Viw Go Capture Ansbre Sutics Teephony Wircss e
A 0 IBRB Re==THEE QQC Fumwlacue
(W sl g e <coit> Credenits =+
No. Time. ‘Source Destination Lua 4 =
srers 7ashuess lt0s & 470 [ACK] Seqe162 Acke10 Wins5640 Lensd
sreezs 7esaueass lotets s 250.xc50.webs1teme cone. con Hello 6P [122.162.143.1 |
1010665 10,1008 Jassviess s A LoGi
1141081 74.53.14.153 10.10.1.4 s 334 VXNLCrShbWUS |
12141955 10.10.1.4 74.53.140.153 e User: Z3VycGrydGRQHERdHIpb3RZLLu =
1 1emee 7assuieass 1010 S 534 UsFacadvends
i41.762058 10.10.1.4 74.53.140.153 e Pass: cHVuanFiQDEyiwes
Toamme 7assueas 10101 S D O S
oz 101008 Jassviess s LTl FRO%: <gurpartap@patriots. in> =,
< - S o o >
> Frane 141 72 bytes on wire (576 bits), 72 bytes captured (576 bits)
© Eohemnet Tr, Ste: Cradiepe 3117162 (30:e0:1c:3c:17:62), Det: Netgear d9:51:60 (00:15:33:d9:31:60)
" Intermet protocel Version &, Sret 10.10.1.4, Det: 76,53 140,153
. Tansnission Control Protocel, Src Port: 1670, Dst Ports 25, Seq: 52, Ack: 355, Len 18

M Wirshork - Firewall ACL Rules - sy

Windows Frewall (netsh) ules o smtp.peap, packet 14.

Source port
add portopening tep 1470 Wireshark DISABLE

Destnation port.
add portopering tcp 25 Wireshark DISABLE

#1Pva source address and port,
2dd portopening tcp 1470 Wireshark DISABLE 10.10.1.4

IPy4 destination adcress and port.
add portopening tcp 25 Wireshark DISABLE 74,53, 140,153

Create rules for |Windows Firewall (etsh) | | nbound

M Wireshark . Credentials - smtp.pcap - a X

Packet No. Protocol Username Additional Info

14 SMIP Z3VycGFydGFwQHBhdHIpb3Rslmlu Username in packet 12
5
0020 5c 59 05 be 0 13 72 4 53 €4 ae ec 63 12 50 18 s ocw
0020 fe 5d 54 bl 00 00 63 45 56 75 61 6d 46 69 5144 T cH VusmFiD
000 45 79 4d 77 3d 3d od o Eythen

e o] e

© 7 Ppassword (smtp.auth.password), 16 bytes

|| Packets: 60 - Displayed: 60 (100.0%) || Profile: smtp_default

EPUB/images/ws-capture-options.png
M Wireshark . Capture Options

Tput Ouput Options.

Interface Traffic
> Ethemet!
v Ethemetd Mt

Addresses: eBD:dlecT1dbibBbidcc?, 192168205124
> [ihemet

@ Cisco remote capture

® EWreader

® Random packet generator
® SSH remote capture

® UDP Listener remote capture

Promi:

Remote capture dependent DLT —

DLTEW
Generator dependent DLT

Remote capture dependent DLT —

Exported PDUs

Snaplen | Buffer (v Monit: Capture Fiter

default 2
default 2

default 2

Enable promiscuous mode on al nerfaces:

Captre e o sected nteroces: (A[Ener s cptre s

Manage Interfaces..
Comple BPFs.

EPUB/images/ws-export-pdus-to-file.png
Display filter:

Dialog

EPUB/images/ws-packet-pane-popup-menu.png
A rttp-ooo.peap - o x
File Edt View Go Copture Analyze Stotistics Telephony Wircless Tools Help

Am 0 IERER’Re>=FT35[Eaaan

(W Teopl o Geply fter . <cii/> T+
o Time Source Destnaton Protoco _Length Info D
70.000005 10.0.0.1 10.0.0.2 HITP 41 Continuation I
50.000007 10.0.0.1 10.0.0.2 TP 73 32323 » 80 [ACK] Seq=62 Ackel Win=5132 Len=35 [TCP segnent of a reassemb..
i omeeto | 10.0.0. p s ST S |
120000011 10.0.0. L 10.0.0.2 |gnore/Unignore Packet Ctrl+D.
ime Reference Ct -
14 0.000013 10.0.0.1 10.0.0.2 ST &y
Time Shit. CrtshiftsT -
16 0.000015 16.0.0.1 10.0.0.2 Packet Comment... Ctri+Alt+C v
Frane 10: 46 bytes on wire (368 bits), 46 byfes € gy Resohved Nome
~ Internet Protocol Version 4, Src: 10.0.0.1, Dst:

0101 = Header Length: 20 bytes (5)

e 5
pirterentinten Semvices Fienas wuon (oicPt cSo [|
S

Total Length: 46 Conversation Filter Nt Seected

Identification: exeel (1) Colorize Conversation »

and Selected

Flags: exee w0 R
Fragnent Offset: @ or Selected
